- -

Solar photovoltaic Maximum Power Point Tracking controller optimization using Grey Wolf Optimizer: A performance comparison between bio-inspired and traditional algorithms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solar photovoltaic Maximum Power Point Tracking controller optimization using Grey Wolf Optimizer: A performance comparison between bio-inspired and traditional algorithms

Mostrar el registro completo del ítem

Águila-León, J.; Vargas-Salgado, C.; Chiñas-Palacios, C.; Díaz-Bello, D. (2023). Solar photovoltaic Maximum Power Point Tracking controller optimization using Grey Wolf Optimizer: A performance comparison between bio-inspired and traditional algorithms. Expert Systems with Applications. 211:1-22. https://doi.org/10.1016/j.eswa.2022.118700

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/193238

Ficheros en el ítem

Metadatos del ítem

Título: Solar photovoltaic Maximum Power Point Tracking controller optimization using Grey Wolf Optimizer: A performance comparison between bio-inspired and traditional algorithms
Autor: Águila-León, Jesús Vargas-Salgado, Carlos Chiñas-Palacios, Cristian Díaz-Bello, Dácil
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Fecha difusión:
Fecha de fin de embargo: 2025-01-01
Resumen:
[EN] Solar photovoltaic systems are widely used; however, their performance is bound to weather conditions, depending on irradiation, temperature, and the effect of shadows. Maximum Power Point Tracking techniques have ...[+]
Palabras clave: Optimization , Metaheuristic algorithms , Grey Wolf Optimization , Microgrid , Photovoltaic , Maximum Power Point Tracking , Bio-inspired algorithm
Derechos de uso: Embargado
Fuente:
Expert Systems with Applications. (issn: 0957-4174 )
DOI: 10.1016/j.eswa.2022.118700
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.eswa.2022.118700
Código del Proyecto:
info:eu-repo/grantAgreement/AEI//PID2021-128822OB-I00/
Agradecimientos:
This research has been funded by the PURPOSED project (ref: PID2021-128822OB-I00), financed by the Spanish State Investigation Agency and by of the Catedra de Transicion Energetica Urbana -a chair hosted at the Universitat ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem