- -

A methodology for evaluating digital contact tracing apps based on the COVID-19 experience

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A methodology for evaluating digital contact tracing apps based on the COVID-19 experience

Show full item record

Hernández-Orallo, E.; Manzoni, P.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J. (2022). A methodology for evaluating digital contact tracing apps based on the COVID-19 experience. Scientific Reports. 12(1):1-16. https://doi.org/10.1038/s41598-022-17024-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/193311

Files in this item

Item Metadata

Title: A methodology for evaluating digital contact tracing apps based on the COVID-19 experience
Author: Hernández-Orallo, Enrique Manzoni, Pietro Tavares De Araujo Cesariny Calafate, Carlos Miguel Cano, Juan-Carlos
UPV Unit: Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Issued date:
Abstract:
[EN] Controlling the spreading of infectious diseases has been shown crucial in the COVID-19 pandemic. Traditional contact tracing is used to detect newly infected individuals by tracing their previous contacts, and by ...[+]
Subjects: Mobile computing , Opportunistic networking , Mobile crowdsensing , Digital epidemiology , COVID-19 , Epidemic modeling
Copyrigths: Reconocimiento (by)
Source:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-022-17024-2
Publisher:
Nature Publishing Group
Publisher version: https://doi.org/10.1038/s41598-022-17024-2
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/
Thanks:
This work is derived from R&D project RTI2018-096384-B-I00, funded by MCIN/AEI/10.13039/501100011033 and "ERDF A way of making Europe".
Type: Artículo

References

Eames, K. & Keeling, M. Contact tracing and disease control. Proc. Biol. Sci. R. Soc. 270, 2565–2571 (2004).

Li, R. et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (sars-cov2). Science (2020).

Ferretti, L. et al. Quantifying sars-cov-2 transmission suggests epidemic control with digital contact tracing. Science (2020). [+]
Eames, K. & Keeling, M. Contact tracing and disease control. Proc. Biol. Sci. R. Soc. 270, 2565–2571 (2004).

Li, R. et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (sars-cov2). Science (2020).

Ferretti, L. et al. Quantifying sars-cov-2 transmission suggests epidemic control with digital contact tracing. Science (2020).

PePP-PT e.V. i.Gr. Pan-European Privacy-Preserving Proximity Tracing (PEPP-PT) (https://www.pepp-pt.org) (2020).

MIT. Safe paths (http://safepaths.mit.edu) (2020).

Pelusi, L., Passarella, A. & Conti, M. Opportunistic networking: Data forwarding in disconnected mobile ad hoc networks. IEEE Commun. Mag. 44, 134–141 (2006).

Zhang, X., Neglia, G., Kurose, J. & Towsley, D. Performance modeling of epidemic routing. Comput. Netw. 51, 2867–2891 (2007).

Hernández-Orallo, E., Manzoni, P., Calafate, C. T. & Cano, J. Evaluating how smartphone contact tracing technology can reduce the spread of infectious diseases: The case of covid-19. IEEE Access 8, 99083–99097 (2020).

Salathé, M. Digital epidemiology: What is it, and where is it going?. Life Sci. Soc. Policy 14, 1 (2018).

Christaki, E. New technologies in predicting, preventing and controlling emerging infectious diseases. Virulence 6, 558–565 (2015).

Doran, D., Severin, K., Gokhale, S. & Dagnino, A. Social media enabled human sensing for smart cities. AI Commun. 29, 57–75 (2016).

Hernández-Orallo, E. et al. Optimising data diffusion while reducing local resources consumption in opportunistic mobile crowdsensing. Pervasive Mob. Comput. 67, 101201 (2020).

Salathé, M. et al. A high-resolution human contact network for infectious disease transmission. Proc. Natl. Acad. Sci. 107, 22020–22025 (2010).

Computer Laboratory - University of Cambridge. The fluphone study (https://www.fluphone.org) (2010).

Raskar, R. et al. Apps gone rogue: Maintaining personal privacy in an epidemic. arXiv:2003.08567 (2020).

Leith, D. J. & Farrell, S. Coronavirus contact tracing: Evaluating the potential of using bluetooth received signal strength for proximity detection. SIGCOMM Comput. Commun. Rev. 50, 66–74 (2020).

Kindt, P. H., Chakraborty, T. & Chakraborty, S. How reliable is smartphone-based electronic contact tracing for covid-19? arXIv:2005.05625 (2020).

Ahmed, N. et al. A survey of covid-19 contact tracing apps. IEEE Access 8, 134577–134601 (2020).

Anglemyer, A. et al. Digital contact tracing technologies in epidemics: A rapid review. Cochrane Database Syst. Rev. (2020).

Braithwaite, I., Callender, T., Bullock, M. & Aldridge, R. W. Automated and partly automated contact tracing: A systematic review to inform the control of covid-19. The Lancet Digital Health.

Colizza, V. et al. Time to evaluate covid-19 contact-tracing apps. Nat. Med. 27, 361–362 (2021).

Kwok, K. O. et al. Epidemic models of contact tracing: Systematic review of transmission studies of severe acute respiratory syndrome and middle east respiratory syndrome. Comput. Struct. Biotechnol. J. 17, 186–194 (2019).

Keeling, M. J. & Rohani, P. Modeling Infectious Diseases in Humans and Animals (Princenton University Press, Princenton, 2008).

Lipsitch, M. et al. Transmission dynamics and control of severe acute respiratory syndrome. Science (New York, N.Y.) 300, 1966–1970 (2003).

Fraser, C., Riley, S., Anderson, R. & Ferguson, N. Factors that make an infectious disease outbreak controllable. Proc. Natl. Acad. Sci. USA 101, 6146–6151 (2004).

Klinkenberg, D., Fraser, C. & Heesterbeek, H. The effectiveness of contact tracing in emerging epidemics. PLoS ONE 1, 1–7 (2006).

Hellewell, J. et al. Feasibility of controlling covid-19 outbreaks by isolation of cases and contacts. Lancet Glob. Health 8, e488–e496 (2020).

Farrahi, K., Emonet, R. & Cebrian, M. Epidemic contact tracing via communication traces. PLoS ONE 9, e95133–e95133 (2014).

Kretzschmar, M. E. et al. Impact of delays on effectiveness of contact tracing strategies for covid-19: A modelling study. Lancet Public Health 5, e452–e459 (2020).

Cencetti, G. et al. Using real-world contact networks to quantify the effectiveness of digital contact tracing and isolation strategies for covid-19 pandemic. medRxiv 2020.05.29.20115915 (2020).

Lambert, A. A mathematical assessment of the efficiency of quarantining and contact tracing in curbing the covid-19 epidemic. medRxiv (2020).

Rodríguez, P. et al. A population-based controlled experiment assessing the epidemiological impact of digital contact tracing. Nat. Commun. 12, 587 (2021).

Wymant, C. et al. The epidemiological impact of the nhs covid-19 app. Nature 594, 408–412 (2021).

Li, T. et al. What makes people install a covid-19 contact-tracing app? Understanding the influence of app design and individual difference on contact-tracing app adoption intention. Pervasive Mob. Comput. 75, 101439 (2021).

Grekousis, G. & Liu, Y. Digital contact tracing, community uptake, and proximity awareness technology to fight covid-19: A systematic review. Sustain. Cities Soc. 71, 102995 (2021).

Moreno López, J. A. et al. Anatomy of digital contact tracing: Role of age, transmission setting, adoption, and case detection. Sci. Adv. 7, eabd8750 (2021).

Maccari, L. & Cagno, V. Do we need a contact tracing app?. Comput. Commun. 166, 9–18 (2021).

Burgio, G., Steinegger, B., Rapisardi, G. & Arenas, A. The impact of homophily on digital proximity tracing (2021).

Hogan, K., Macedo, B., Macha, V., Barman, A. & Jiang, X. Contact tracing apps: Lessons learned on privacy, autonomy, and the need for detailed and thoughtful implementation. JMIR Med. Inform. 9, e27449 (2021).

Garrett, P. M. et al. The acceptability and uptake of smartphone tracking for covid-19 in Australia. PLoS ONE 16, 1–23 (2021).

Shubina, V., Ometov, A., Basiri, A. & Lohan, E. S. Effectiveness modelling of digital contact-tracing solutions for tackling the covid-19 pandemic. J. Navig. 74, 853–886 (2021).

Ma, J. et al. Proximity tracing app, report from the measurement campaign 2020-04-09. Technical Report (2020).

European Centre for Disease Prevention and Control. Contact tracing: Public health management of persons, including healthcare workers, having had contact with covid-19 cases in the European union—second update. Tech. Rep., Stockholm: ECDC (2020).

CDC: Centers for Disease Control and Prevention. Coronavirus disease 2019 (covid 19): Public health guidance for community-related exposure (2020).

Madoery, P. G. et al. Feature selection for proximity estimation in covid-19 contact tracing apps based on bluetooth low energy (ble). Pervasive Mob. Comput. 77, 101474 (2021).

Leith, D. J. & Farrell, S. Measurement-based evaluation of google/apple exposure notification api for proximity detection in a light-rail tram. PLoS ONE 15, 1–16 (2020).

Pueyo, T. Coronavirus: How to do testing and contact tracing. Medium (https://medium.com/@tomaspueyo) (2020).

A technical roadmap for the UK’s contact tracing app functionality (2020).

Liang, F. Covid-19 and health code: How digital platforms tackle the pandemic in China. Soc. Media Soc. 6, 2056305120947657 (2020).

Nam, T. How did Korea use technologies to manage the covid-19 crisis? A country report. Int. Rev. Public Admin. 25, 225–242 (2020).

Joo, J. & Shin, M. M. Resolving the tension between full utilization of contact tracing app services and user stress as an effort to control the covid-19 pandemic. Serv. Bus. 14, 461–478 (2020).

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record