- -

Expression of an extremophilic xylanase in Nicotiana benthamiana and its use for the production of prebiotic xylooligosaccharides

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Expression of an extremophilic xylanase in Nicotiana benthamiana and its use for the production of prebiotic xylooligosaccharides

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Talens-Perales, David es_ES
dc.contributor.author Nicolau-Sanus, Maria es_ES
dc.contributor.author Polaina, Julio es_ES
dc.contributor.author Daròs, José-Antonio es_ES
dc.date.accessioned 2023-05-12T18:01:54Z
dc.date.available 2023-05-12T18:01:54Z
dc.date.issued 2022-09-21 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/193317
dc.description.abstract [EN] A gene construct encoding a xylanase, which is active in extreme conditions of temperature and alkaline pH (90 °C, pH 10.5), has been transitorily expressed with high efficiency in Nicotiana benthamiana using a viral vector. The enzyme, targeted to the apoplast, accumulates in large amounts in plant tissues in as little as 7 days after inoculation, without detrimental effects on plant growth. The properties of the protein produced by the plant, in terms of resistance to temperature, pH, and enzymatic activity, are equivalent to those observed when Escherichia coli is used as a host. Purification of the plant-produced recombinant xylanase is facilitated by exporting the protein to the apoplastic space. The production of this xylanase by N. benthamiana, which avoids the hindrances derived from the use of E. coli, namely, intracellular production requiring subsequent purification, represents an important step for potential applications in the food industry in which more sustainable and green products are continuously demanded. As an example, the use of the enzyme producing prebiotic xylooligosdaccharides from xylan is here reported. es_ES
dc.description.sponsorship This work was supported by grant PID2020-114691RB-I00 from the Spanish Ministerio de Ciencia e Innovacion, through the Agencia Estatal de Investigacion (co-financed European Regional Development Fund), and by the Bio Based Industries Joint Undertaking, under the European Union's Horizon 2020 research and innovation program (Project WOODZYMES, Grant Agreement H2020-BBI-JU-792070). M.N.-S. is the recipient of a predoctoral contract from the Spanish Ministerio de Ciencia e Innovacion (PRE2018-084771). es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Biochemistry es_ES
dc.subject Biotechnology es_ES
dc.subject Plant sciences es_ES
dc.subject Microbiology es_ES
dc.title Expression of an extremophilic xylanase in Nicotiana benthamiana and its use for the production of prebiotic xylooligosaccharides es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-022-19774-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114691RB-I00/ES/BIOTECNOLOGIA DE VIRUS DE PLANTAS: VECTORES VIRALES Y ESTRATEGIAS DE RESISTENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PRE2018-084771/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/792070/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Talens-Perales, D.; Nicolau-Sanus, M.; Polaina, J.; Daròs, J. (2022). Expression of an extremophilic xylanase in Nicotiana benthamiana and its use for the production of prebiotic xylooligosaccharides. Scientific Reports. 12(1):1-10. https://doi.org/10.1038/s41598-022-19774-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-022-19774-5 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 36131073 es_ES
dc.identifier.pmcid PMC9492658 es_ES
dc.relation.pasarela S\473471 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Lomonossoff, G. P. & D’Aoust, M. A. Plant-produced biopharmaceuticals: A case of technical developments driving clinical deployment. Science 353, 1237–1240 (2016). es_ES
dc.description.references Schillberg, S. & Spiegel, H. Recombinant protein production in plants: A brief overview of strengths and challenges. In Methods in Molecular Biology (eds. Schillberg, S. & Spiegel, H.), Vol. 2480, 1–13 (Humana, New York, 2022). es_ES
dc.description.references Long, Y. et al. Plant molecular farming, a tool for functional food production. J. Agric. Food Chem. 70, 2108–2116 (2022). es_ES
dc.description.references Ricroch, A. E., Martin-Laffon, J., Rault, B., Pallares, V. C. & Kuntz, M. Next biotechnological plants for addressing global challenges: The contribution of transgenesis and new breeding techniques. New Biotechnol. 66, 25–35 (2022). es_ES
dc.description.references Chincinska, I. A. Leaf infiltration in plant science: Old method, new possibilities. Plant Methods 17, 83 (2021). es_ES
dc.description.references Wang, M. et al. Plant virology delivers diverse toolsets for biotechnology. Viruses 12, 1338 (2020). es_ES
dc.description.references Lindbo, J. A. TRBO: A high-efficiency tobacco mosaic virus RNA-based overexpression vector. Plant Physiol 145, 1232–1240 (2007). es_ES
dc.description.references Dawson, W. O. A personal history of virus-based vector construction. In Plant Viral Vectors (eds. Palmer, K. & Gleba, Y.), Vol. 375, 1–18 (Springer, Berlin, Heidelberg, 2014). es_ES
dc.description.references Shi, X. et al. Efficient production of antifungal proteins in plants using a new transient expression vector derived from tobacco mosaic virus. Plant Biotechnol. J. 17, 1069–1080 (2019). es_ES
dc.description.references Verma, D. Extremophilic prokaryotic endoxylanases: Diversity, applicability, and molecular insights. Front. Microbiol. 12, 2489 (2021). es_ES
dc.description.references Alokika, & Singh, B. Production, characteristics, and biotechnological applications of microbial xylanases. Appl. Microbiol. Biotechnol. 103, 8763–8784 (2019). es_ES
dc.description.references Naidu, D. S., Hlangothi, S. P. & John, M. J. Bio-based products from xylan: A review. Carbohydr. Polym. 179, 28–41 (2018). es_ES
dc.description.references Scheller, H. V. & Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 61, 263–289 (2010). es_ES
dc.description.references Gupta, G. K., Dixit, M., Kapoor, R. K. & Shukla, P. Xylanolytic enzymes in pulp and paper industry: New technologies and perspectives. Mol. Biotechnol. https://doi.org/10.1007/s12033-021-00396-7 (2021). es_ES
dc.description.references Walia, A., Guleria, S., Mehta, P., Chauhan, A. & Parkash, J. Microbial xylanases and their industrial application in pulp and paper biobleaching: A review. 3 Biotech 7, 11 (2017). es_ES
dc.description.references De Melo Capetti, C. C. et al. Recent advances in the enzymatic production and applications of xylooligosaccharides. World J. Microbiol. Biotechnol. 37, 169 (2021). es_ES
dc.description.references Santibáñez, L. et al. Xylooligosaccharides from lignocellulosic biomass: A comprehensive review. Carbohydr. Polym. 251, 117118 (2021). es_ES
dc.description.references Nordberg Karlsson, E., Schmitz, E., Linares-Pastén, J. A. & Adlercreutz, P. Endo-xylanases as tools for production of substituted xylooligosaccharides with prebiotic properties. Appl. Microbiol. Biotechnol. 102, 9081–9088 (2018). es_ES
dc.description.references Gautério, G. V. et al. Hydrolysates containing xylooligosaccharides produced by different strategies: Structural characterization, antioxidant and prebiotic activities. Food Chem. 391, 133231 (2022). es_ES
dc.description.references Gufe, C., Ngenyoung, A., Rattanarojpong, T. & Khunrae, P. Investigation into the effects of CbXyn10C and Xyn11A on xylooligosaccharide profiles produced from sugarcane bagasse and rice straw and their impact on probiotic growth. Bioresour. Technol. 344, 126319 (2022). es_ES
dc.description.references Klangpetch, W. et al. Microwave-assisted enzymatic hydrolysis to produce xylooligosaccharides from rice husk alkali-soluble arabinoxylan. Sci. Rep. 12, 11 (2022). es_ES
dc.description.references Liu, J. et al. One-step fermentation for producing xylo-oligosaccharides from wheat bran by recombinant Escherichia coli containing an alkaline xylanase. BMC Biotechnol. 22, 6 (2022). es_ES
dc.description.references Vacilotto, M. M. et al. Paludibacter propionicigenes GH10 xylanase as a tool for enzymatic xylooligosaccharides production from heteroxylans. Carbohydr. Polym. 275, 118684 (2022). es_ES
dc.description.references Talens-Perales, D., Sánchez-Torres, P., Marín-Navarro, J. & Polaina, J. In silico screening and experimental analysis of family GH11 xylanases for applications under conditions of alkaline pH and high temperature. Biotechnol. Biofuels 13, 1–15 (2020). es_ES
dc.description.references Talens-Perales, D., Jiménez-Ortega, E., Sánchez-Torres, P., Sanz-Aparicio, J. & Polaina, J. Phylogenetic, functional and structural characterization of a GH10 xylanase active at extreme conditions of temperature and alkalinity. Comput. Struct. Biotechnol. J. 19, 2676–2686 (2021). es_ES
dc.description.references Boonyapakron, K., Chitnumsub, P., Kanokratana, P. & Champreda, V. Enhancement of catalytic performance of a metagenome-derived thermophilic oligosaccharide-specific xylanase by binding module removal and random mutagenesis. J. Biosci. Bioeng. 131, 13–19 (2021). es_ES
dc.description.references Davy, A. M., Kildegaard, H. F. & Andersen, M. R. Cell factory engineering. Cell Syst. 4, 262–275 (2017). es_ES
dc.description.references Sainz-Polo, M. A. et al. Three-dimensional structure of Saccharomyces invertase: Role of a non-catalytic domain in oligomerization and substrate specificity. J. Biol. Chem. 288, 9755–9766 (2013). es_ES
dc.description.references Karbalaei, M., Rezaee, S. A. & Farsiani, H. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. J. Cell. Physiol. 235, 5867–5881 (2020). es_ES
dc.description.references Diego-Martin, B. et al. Pilot production of SARS-CoV-2 related proteins in plants: A proof of concept for rapid repurposing of indoor farms into biomanufacturing facilities. Front. Plant Sci. 11, 2101 (2020). es_ES
dc.description.references Xu, J., Tan, L., Goodrum, K. J. & Kieliszewski, M. J. High-yields and extended serum half-life of human interferon α2b expressed in tobacco cells as arabinogalactan-protein fusions. Biotechnol. Bioeng. 97, 997–1008 (2007). es_ES
dc.description.references Amorim, C., Silvério, S. C., Prather, K. L. J. & Rodrigues, L. R. From lignocellulosic residues to market: Production and commercial potential of xylooligosaccharides. Biotechnol. Adv. 37, 107397 (2019). es_ES
dc.description.references Sainz, M. B. Commercial cellulosic ethanol: The role of plant-expressed enzymes. In Biofuels: Global Impact on Renewable Energy, Production Agriculture, and Technological Advancements, Vol. 45 237–264 (Springer, 2011). es_ES
dc.description.references Taylor, L. E. et al. Heterologous expression of glycosyl hydrolases in planta: A new departure for biofuels. Trends Biotechnol. 26, 413–424 (2008). es_ES
dc.description.references Park, S. H., Ong, R. G. & Sticklen, M. Strategies for the production of cell wall-deconstructing enzymes in lignocellulosic biomass and their utilization for biofuel production. Plant Biotechnol. J. 14, 1329–1344 (2016). es_ES
dc.description.references Jung, S. K. et al. Agrobacterium tumefaciens mediated transient expression of plant cell wall-degrading enzymes in detached sunflower leaves. Biotechnol. Prog. 30, 905–915 (2014). es_ES
dc.description.references Song, E. G. & Ryu, K. H. A pepper mottle virus-based vector enables systemic expression of endoglucanase D in non-transgenic plants. Arch. Virol. 162, 3717–3726 (2017). es_ES
dc.description.references Pantaleoni, L. et al. Chloroplast molecular farming: Efficient production of a thermostable xylanase by Nicotiana tabacum plants and long-term conservation of the recombinant enzyme. Protoplasma 251, 639–648 (2014). es_ES
dc.description.references Hyunjong, B., Lee, D. S. & Hwang, I. Dual targeting of xylanase to chloroplasts and peroxisomes as a means to increase protein accumulation in plant cells. J. Exp. Bot. 57, 161–169 (2006). es_ES
dc.description.references de Oliveira Simões, L. C. et al. Purification and physicochemical characterization of a novel thermostable Xylanase secreted by the fungus Myceliophthora heterothallica F.2.1.4.. Appl. Biochem. Biotechnol. 188, 991–1008 (2019). es_ES
dc.description.references Ríos-Ríos, K. L. et al. Production of tailored xylo-oligosaccharides from beechwood xylan by different enzyme membrane reactors and evaluation of their prebiotic activity. Biochem. Eng. J. 185, 108494 (2022). es_ES
dc.description.references Shi, H. et al. Biochemical properties of a novel thermostable and highly xylose-tolerant β-xylosidase/α-arabinosidase from Thermotoga thermarum. Biotechnol. Biofuels 6, 27 (2013). es_ES
dc.description.references Poletto, P. et al. Xylooligosaccharides: Transforming the lignocellulosic biomasses into valuable 5-carbon sugar prebiotics. Process Biochem. 91, 352–363 (2020). es_ES
dc.description.references Thole, V., Worland, B., Snape, J. W. & Vain, P. The pCLEAN dual binary vector system for Agrobacterium-mediated plant transformation. Plant Physiol. 145, 1211–1219 (2007). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem