Lomonossoff, G. P. & D’Aoust, M. A. Plant-produced biopharmaceuticals: A case of technical developments driving clinical deployment. Science 353, 1237–1240 (2016).
Schillberg, S. & Spiegel, H. Recombinant protein production in plants: A brief overview of strengths and challenges. In Methods in Molecular Biology (eds. Schillberg, S. & Spiegel, H.), Vol. 2480, 1–13 (Humana, New York, 2022).
Long, Y. et al. Plant molecular farming, a tool for functional food production. J. Agric. Food Chem. 70, 2108–2116 (2022).
[+]
Lomonossoff, G. P. & D’Aoust, M. A. Plant-produced biopharmaceuticals: A case of technical developments driving clinical deployment. Science 353, 1237–1240 (2016).
Schillberg, S. & Spiegel, H. Recombinant protein production in plants: A brief overview of strengths and challenges. In Methods in Molecular Biology (eds. Schillberg, S. & Spiegel, H.), Vol. 2480, 1–13 (Humana, New York, 2022).
Long, Y. et al. Plant molecular farming, a tool for functional food production. J. Agric. Food Chem. 70, 2108–2116 (2022).
Ricroch, A. E., Martin-Laffon, J., Rault, B., Pallares, V. C. & Kuntz, M. Next biotechnological plants for addressing global challenges: The contribution of transgenesis and new breeding techniques. New Biotechnol. 66, 25–35 (2022).
Chincinska, I. A. Leaf infiltration in plant science: Old method, new possibilities. Plant Methods 17, 83 (2021).
Wang, M. et al. Plant virology delivers diverse toolsets for biotechnology. Viruses 12, 1338 (2020).
Lindbo, J. A. TRBO: A high-efficiency tobacco mosaic virus RNA-based overexpression vector. Plant Physiol 145, 1232–1240 (2007).
Dawson, W. O. A personal history of virus-based vector construction. In Plant Viral Vectors (eds. Palmer, K. & Gleba, Y.), Vol. 375, 1–18 (Springer, Berlin, Heidelberg, 2014).
Shi, X. et al. Efficient production of antifungal proteins in plants using a new transient expression vector derived from tobacco mosaic virus. Plant Biotechnol. J. 17, 1069–1080 (2019).
Verma, D. Extremophilic prokaryotic endoxylanases: Diversity, applicability, and molecular insights. Front. Microbiol. 12, 2489 (2021).
Alokika, & Singh, B. Production, characteristics, and biotechnological applications of microbial xylanases. Appl. Microbiol. Biotechnol. 103, 8763–8784 (2019).
Naidu, D. S., Hlangothi, S. P. & John, M. J. Bio-based products from xylan: A review. Carbohydr. Polym. 179, 28–41 (2018).
Scheller, H. V. & Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 61, 263–289 (2010).
Gupta, G. K., Dixit, M., Kapoor, R. K. & Shukla, P. Xylanolytic enzymes in pulp and paper industry: New technologies and perspectives. Mol. Biotechnol. https://doi.org/10.1007/s12033-021-00396-7 (2021).
Walia, A., Guleria, S., Mehta, P., Chauhan, A. & Parkash, J. Microbial xylanases and their industrial application in pulp and paper biobleaching: A review. 3 Biotech 7, 11 (2017).
De Melo Capetti, C. C. et al. Recent advances in the enzymatic production and applications of xylooligosaccharides. World J. Microbiol. Biotechnol. 37, 169 (2021).
Santibáñez, L. et al. Xylooligosaccharides from lignocellulosic biomass: A comprehensive review. Carbohydr. Polym. 251, 117118 (2021).
Nordberg Karlsson, E., Schmitz, E., Linares-Pastén, J. A. & Adlercreutz, P. Endo-xylanases as tools for production of substituted xylooligosaccharides with prebiotic properties. Appl. Microbiol. Biotechnol. 102, 9081–9088 (2018).
Gautério, G. V. et al. Hydrolysates containing xylooligosaccharides produced by different strategies: Structural characterization, antioxidant and prebiotic activities. Food Chem. 391, 133231 (2022).
Gufe, C., Ngenyoung, A., Rattanarojpong, T. & Khunrae, P. Investigation into the effects of CbXyn10C and Xyn11A on xylooligosaccharide profiles produced from sugarcane bagasse and rice straw and their impact on probiotic growth. Bioresour. Technol. 344, 126319 (2022).
Klangpetch, W. et al. Microwave-assisted enzymatic hydrolysis to produce xylooligosaccharides from rice husk alkali-soluble arabinoxylan. Sci. Rep. 12, 11 (2022).
Liu, J. et al. One-step fermentation for producing xylo-oligosaccharides from wheat bran by recombinant Escherichia coli containing an alkaline xylanase. BMC Biotechnol. 22, 6 (2022).
Vacilotto, M. M. et al. Paludibacter propionicigenes GH10 xylanase as a tool for enzymatic xylooligosaccharides production from heteroxylans. Carbohydr. Polym. 275, 118684 (2022).
Talens-Perales, D., Sánchez-Torres, P., Marín-Navarro, J. & Polaina, J. In silico screening and experimental analysis of family GH11 xylanases for applications under conditions of alkaline pH and high temperature. Biotechnol. Biofuels 13, 1–15 (2020).
Talens-Perales, D., Jiménez-Ortega, E., Sánchez-Torres, P., Sanz-Aparicio, J. & Polaina, J. Phylogenetic, functional and structural characterization of a GH10 xylanase active at extreme conditions of temperature and alkalinity. Comput. Struct. Biotechnol. J. 19, 2676–2686 (2021).
Boonyapakron, K., Chitnumsub, P., Kanokratana, P. & Champreda, V. Enhancement of catalytic performance of a metagenome-derived thermophilic oligosaccharide-specific xylanase by binding module removal and random mutagenesis. J. Biosci. Bioeng. 131, 13–19 (2021).
Davy, A. M., Kildegaard, H. F. & Andersen, M. R. Cell factory engineering. Cell Syst. 4, 262–275 (2017).
Sainz-Polo, M. A. et al. Three-dimensional structure of Saccharomyces invertase: Role of a non-catalytic domain in oligomerization and substrate specificity. J. Biol. Chem. 288, 9755–9766 (2013).
Karbalaei, M., Rezaee, S. A. & Farsiani, H. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. J. Cell. Physiol. 235, 5867–5881 (2020).
Diego-Martin, B. et al. Pilot production of SARS-CoV-2 related proteins in plants: A proof of concept for rapid repurposing of indoor farms into biomanufacturing facilities. Front. Plant Sci. 11, 2101 (2020).
Xu, J., Tan, L., Goodrum, K. J. & Kieliszewski, M. J. High-yields and extended serum half-life of human interferon α2b expressed in tobacco cells as arabinogalactan-protein fusions. Biotechnol. Bioeng. 97, 997–1008 (2007).
Amorim, C., Silvério, S. C., Prather, K. L. J. & Rodrigues, L. R. From lignocellulosic residues to market: Production and commercial potential of xylooligosaccharides. Biotechnol. Adv. 37, 107397 (2019).
Sainz, M. B. Commercial cellulosic ethanol: The role of plant-expressed enzymes. In Biofuels: Global Impact on Renewable Energy, Production Agriculture, and Technological Advancements, Vol. 45 237–264 (Springer, 2011).
Taylor, L. E. et al. Heterologous expression of glycosyl hydrolases in planta: A new departure for biofuels. Trends Biotechnol. 26, 413–424 (2008).
Park, S. H., Ong, R. G. & Sticklen, M. Strategies for the production of cell wall-deconstructing enzymes in lignocellulosic biomass and their utilization for biofuel production. Plant Biotechnol. J. 14, 1329–1344 (2016).
Jung, S. K. et al. Agrobacterium tumefaciens mediated transient expression of plant cell wall-degrading enzymes in detached sunflower leaves. Biotechnol. Prog. 30, 905–915 (2014).
Song, E. G. & Ryu, K. H. A pepper mottle virus-based vector enables systemic expression of endoglucanase D in non-transgenic plants. Arch. Virol. 162, 3717–3726 (2017).
Pantaleoni, L. et al. Chloroplast molecular farming: Efficient production of a thermostable xylanase by Nicotiana tabacum plants and long-term conservation of the recombinant enzyme. Protoplasma 251, 639–648 (2014).
Hyunjong, B., Lee, D. S. & Hwang, I. Dual targeting of xylanase to chloroplasts and peroxisomes as a means to increase protein accumulation in plant cells. J. Exp. Bot. 57, 161–169 (2006).
de Oliveira Simões, L. C. et al. Purification and physicochemical characterization of a novel thermostable Xylanase secreted by the fungus Myceliophthora heterothallica F.2.1.4.. Appl. Biochem. Biotechnol. 188, 991–1008 (2019).
Ríos-Ríos, K. L. et al. Production of tailored xylo-oligosaccharides from beechwood xylan by different enzyme membrane reactors and evaluation of their prebiotic activity. Biochem. Eng. J. 185, 108494 (2022).
Shi, H. et al. Biochemical properties of a novel thermostable and highly xylose-tolerant β-xylosidase/α-arabinosidase from Thermotoga thermarum. Biotechnol. Biofuels 6, 27 (2013).
Poletto, P. et al. Xylooligosaccharides: Transforming the lignocellulosic biomasses into valuable 5-carbon sugar prebiotics. Process Biochem. 91, 352–363 (2020).
Thole, V., Worland, B., Snape, J. W. & Vain, P. The pCLEAN dual binary vector system for Agrobacterium-mediated plant transformation. Plant Physiol. 145, 1211–1219 (2007).
[-]