- -

Coupled-core fiber Bragg gratings for low-cost sensing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Coupled-core fiber Bragg gratings for low-cost sensing

Mostrar el registro completo del ítem

Flores-Bravo, JA.; Madrigal-Madrigal, J.; Zubia, J.; Sales Maicas, S.; Villatoro, J. (2022). Coupled-core fiber Bragg gratings for low-cost sensing. Scientific Reports. 12(1):1-9. https://doi.org/10.1038/s41598-022-05313-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/193331

Ficheros en el ítem

Metadatos del ítem

Título: Coupled-core fiber Bragg gratings for low-cost sensing
Autor: Flores-Bravo, Jose A. Madrigal-Madrigal, Javier Zubia, Joseba Sales Maicas, Salvador Villatoro, Joel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Fecha difusión:
Resumen:
[EN] Sensors based on Bragg gratings inscribed in conventional single mode fibers are expensive due to the need of a sophisticated, but low-speed, interrogation system. As an alternative to overcome this issue, in this ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-022-05313-9
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-022-05313-9
Código del Proyecto:
info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//PID2020-118310RB-I00//SPECIALTY FIBERS EXPLOITING SPATIAL MULTIPLEXING FOR SIGNAL PROCESSING, SENSING AND BEYOND/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-101997-B-I00/ES/SENSORES AVANZADOS CON FIBRA MULTINUCLEO/
info:eu-repo/grantAgreement/UPV//PAID-01-18//Programa de Ayudas de Investigación y Desarrollo (PAID-01-18)/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094669-B-C31/ES/TECNOLOGIAS DISRUPTIVAS DE FIBRA OPTICA DE PLASTICO/
Agradecimientos:
This work is part of the Projects No. PGC2018-101997-B-I00 and RTI2018-094669-B-C31 funded by the MCIN/AEI/10.13039/501100011033/and FEDER, Una manera de hacer Europa; and the scholarship PAID-01-18 Granted by the Universitat ...[+]
Tipo: Artículo

References

Riza, M. A., Go, Y. I., Harun, S. W. & Maier, R. R. FBG sensors for environmental and biochemical applications—A review. IEEE Sens. J. 20, 7614–7627 (2020).

Li, T., Guo, J., Tan, Y. & Zhou, Z. Recent advances and tendency in fiber Bragg grating-based vibration sensor: A review. IEEE Sens. J. 20, 12074–12087 (2020).

Sahota, J., Gupta, N. & Dhawan, D. Fiber Bragg grating sensors for monitoring of physical parameters: A comprehensive review. Opt. Eng. 59, 060901 (2020). [+]
Riza, M. A., Go, Y. I., Harun, S. W. & Maier, R. R. FBG sensors for environmental and biochemical applications—A review. IEEE Sens. J. 20, 7614–7627 (2020).

Li, T., Guo, J., Tan, Y. & Zhou, Z. Recent advances and tendency in fiber Bragg grating-based vibration sensor: A review. IEEE Sens. J. 20, 12074–12087 (2020).

Sahota, J., Gupta, N. & Dhawan, D. Fiber Bragg grating sensors for monitoring of physical parameters: A comprehensive review. Opt. Eng. 59, 060901 (2020).

Massaroni, C. et al. Fiber Bragg grating sensors for cardiorespiratory monitoring: A review. IEEE Sens. J. 21, 14069–14080. https://doi.org/10.1109/JSEN.2020.2988692 (2021).

Götten, M. et al. A CDM-WDM interrogation scheme for massive serial FBG sensor networks. IEEE Sens. J. https://doi.org/10.1109/JSEN.2021.3070446 (2021).

Cusano, A., Cutolo, A. & Albert, J. Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science Publishers, 2011).

Mendoza, E. A. (Patent US 7512291B2, 2009).

Yang, F. et al. Miniature interrogator for multiplexed FBG strain sensors based on a thermally tunable microring resonator array. Opt. Express 27, 6037–6046 (2019).

Darwich, D., Youssef, A. & Zaraket, H. Low-cost multiple FBG interrogation technique for static applications. Opt. Lett. 45, 1116–1119 (2020).

Silveira, P. C. et al. 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1–6 (IEEE).

Darwich, D., Youssef, A., Pisco, M. & Zaraket, H. Investigation of low-cost interrogation technique based on modulated distributed feedback laser. IEEE Sens. J. 20, 2460–2466 (2019).

Tosi, D. Review and analysis of peak tracking techniques for fiber Bragg grating sensors. Sensors 17, 2368 (2017).

Kouroussis, G. et al. Edge-filter technique and dominant frequency analysis for high-speed railway monitoring with fiber Bragg gratings. Smart Mater. Struct. 25, 075029 (2016).

Fernández, M. P., Rossini, L. A. B., Cruz, J. L., Andrés, M. V. & Caso, P. A. C. High-speed and high-resolution interrogation of FBG sensors using wavelength-to-time mapping and Gaussian filters. Opt. Express 27, 36815–36823 (2019).

Ogawa, K. et al. Wireless, portable fiber Bragg grating interrogation system employing optical edge filter. Sensors 19, 3222 (2019).

Kim, C.-S. et al. Multi-point interrogation of FBG sensors using cascaded flexible wavelength-division Sagnac loop filters. Opt. Express 14, 8546–8551 (2006).

Cheng, L.-K., Hagen, R., van Megen, D., Molkenboer, F. & Jansen, R. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems (International Society for Optics and Photonics, 2019).

Dong, X., Shao, L.-Y., Fu, H., Tam, H. Y. & Lu, C. Intensity-modulated fiber Bragg grating sensor system based on radio-frequency signal measurement. Opt. Lett. 33, 482–484 (2008).

Gatti, D., Galzerano, G., Janner, D., Longhi, S. & Laporta, P. Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique. Opt. Express 16, 1945–1950. https://doi.org/10.1364/OE.16.001945 (2008).

Rosenthal, A., Razansky, D. & Ntziachristos, V. High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating. Opt. Lett. 36, 1833–1835 (2011).

Wu, Q. & Okabe, Y. High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system. Opt. Express 20, 28353–28362. https://doi.org/10.1364/OE.20.028353 (2012).

Huang, J. et al. Optical sensors reflection-based phase-shifted long period fiber grating for simultaneous measurement of temperature and refractive index. Opt. Eng. https://doi.org/10.1117/1.OE.52.1.014404 (2013).

Guo, J., Xue, S., Zhao, Q. & Yang, C. Ultrasonic imaging of seismic physical models using a phase-shifted fiber Bragg grating. Opt. Express 22, 19573–19580. https://doi.org/10.1364/OE.22.019573 (2014).

Deepa, S. & Das, B. Interrogation techniques for π-phase-shifted fiber Bragg grating sensor: A review. Sens. Actuators A 315, 112215. https://doi.org/10.1016/j.sna.2020.112215 (2020).

Wang, Q. & Liu, Y. Review of optical fiber bending/curvature sensor. Measurement 130, 161–176 (2018).

Bao, W., Rong, Q., Chen, F. & Qiao, X. All-fiber 3D vector displacement (bending) sensor based on an eccentric FBG. Opt. Express 26, 8619–8627 (2018).

Yakushin, S. S. et al. A study of bending effect on the femtosecond-pulse inscribed fiber Bragg gratings in a dual-core fiber. Opt. Fiber Technol. 43, 101–105 (2018).

Jang, M., Kim, J. S., Um, S. H., Yang, S. & Kim, J. Ultra-high curvature sensors for multi-bend structures using fiber Bragg gratings. Opt. Express 27, 2074–2084. https://doi.org/10.1364/OE.27.002074 (2019).

Liu, Z. et al. Strongly coupled multicore fiber with FBGs for multipoint and multiparameter sensing. Opt. Fiber Technol. 58, 102315. https://doi.org/10.1016/j.yofte.2020.102315 (2020).

Murakami, Y. & Sudo, S. Coupling characteristics measurements between curved waveguides using a two-core fiber coupler. Appl. Opt. 20, 417–422 (1981).

Rugeland, P. & Margulis, W. Revisiting twin-core fiber sensors for high-temperature measurements. Appl. Opt. 51, 6227–6232 (2012).

Yin, G., Zhang, F., Xu, B., He, J. & Wang, Y. Intensity-modulated bend sensor by using a twin core fiber: Theoretical and experimental studies. Opt. Express 28, 14850–14858 (2020).

Flockhart, G. et al. Two-axis bend measurement with Bragg gratings in multicore optical fiber. Opt. Lett. 28, 387–389 (2003).

Zhang, H. et al. Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing. J. Opt. 18, 085705 (2016).

Bao, W., Wang, C., Wang, Y., Sahoo, N. & Zhang, L. 2D bending (curvature) recognition based on a combination of a TFBG and an orthogonal TFBG pair. Appl. Phys. Express 12, 072009 (2019).

Rong, Q., Qiao, X., Yang, H., Lim, K. S. & Ahmad, H. Fiber Bragg grating inscription in a thin-core fiber for displacement measurement. IEEE Photonics Technol. Lett. 27, 1108–1111 (2015).

Chen, F., Qiao, X., Wang, R., Su, D. & Rong, Q. Orientation-dependent fiber-optic displacement sensor using a fiber Bragg grating inscribed in a side-hole fiber. Appl. Opt. 57, 3581–3585 (2018).

Blanchard, P. M. et al. Two-dimensional bend sensing with a single, multi-core optical fibre. Smart Mater. Struct. 9, 132 (2000).

Guzman-Sepulveda, J. & May-Arrioja, D. In-fiber directional coupler for high-sensitivity curvature measurement. Opt. Express 21, 11853–11861 (2013).

Van Newkirk, A. et al. Bending sensor combining multicore fiber with a mode-selective photonic lantern. Opt. Lett. 40, 5188–5191 (2015).

Villatoro, J. et al. Ultrasensitive vector bending sensor based on multicore optical fiber. Opt. Lett. 41, 832–835 (2016).

Wang, S. et al. Bending vector sensor based on the multimode-2-core-multimode fiber structure. IEEE Photonics Technol. Lett. 28, 2066–2069. https://doi.org/10.1109/LPT.2016.2582758 (2016).

Liu, Z. et al. Temperature-insensitive curvature sensor based on Bragg gratings written in strongly coupled multicore fiber. Opt. Lett. 46, 3933–3936. https://doi.org/10.1364/OL.432889 (2021).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem