- -

Preliminary evaluation of the safety and efficacy of glucose solution infusion through the hepatic artery on irreversible electroporation focusing.

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Preliminary evaluation of the safety and efficacy of glucose solution infusion through the hepatic artery on irreversible electroporation focusing.

Mostrar el registro completo del ítem

Sarreshtehdari, A.; Burdio, F.; López-Alonso, B.; Lucia, O.; Burdio, JM.; Villamonte, M.; Andaluz, A.... (2023). Preliminary evaluation of the safety and efficacy of glucose solution infusion through the hepatic artery on irreversible electroporation focusing. Scientific Reports. 13(1):1-9. https://doi.org/10.1038/s41598-023-33487-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/193333

Ficheros en el ítem

Metadatos del ítem

Título: Preliminary evaluation of the safety and efficacy of glucose solution infusion through the hepatic artery on irreversible electroporation focusing.
Autor: Sarreshtehdari, Amirhossein Burdio, Fernando López-Alonso, Borja Lucia, Oscar Burdio, José Miguel Villamonte, Maria Andaluz, A. García-Arnás, F. Berjano, Enrique Moll, Xavier
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Fecha difusión:
Resumen:
[EN] Due to electrical features of the tissue, such as impedance, which have a significant impact on irreversible electroporation (IRE) function, the administration of glucose solution 5% (GS5%) through the hepatic artery ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-023-33487-3
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-023-33487-3
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094357-B-C21/ES/MODELADO Y EXPERIMENTACION PARA TERAPIAS ABLATIVAS INNOVADORAS/
info:eu-repo/grantAgreement/ISCIII//PI17%2F0048/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094357-B-C22/ES/INVESTIGACION QUIRURGICA PARA TERAPIAS ABLATIVAS INNOVADORAS/
info:eu-repo/grantAgreement/ISCIII/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020 (ISCIII)/PI21%2F00440/ES/EFECTOS DE LA ELETROPORACION Y LA ELECTROQUIMIOTERAPIA EN LA DESTRUCCION LOCALIZADA DE TUMORES HEPATICOS EN MODELO PORCINO EXPERIMENTAL/
Agradecimientos:
This research was supported by the Spanish government (Ministry of Economy and Competitiveness) under Grants RTI2018-094357-B-C21, RTI2018-094357-B-C22 and Carlos III Health Institute under Grant PI17/0048 and also PI21/00440 ...[+]
Tipo: Artículo

References

Bertacchini, C. et al. Design of an irreversible electroporation system for clinical use. Technol. Cancer Res. Treat. 6, 313–320 (2007).

Zhang, Y. et al. MR imaging to assess immediate response to irreversible electroporation for targeted ablation of liver tissues: Preclinical feasibility studies in a rodent model. Radiology 256, 424–432 (2010).

Martin, R. C. G., McFarland, K., Ellis, S. & Velanovich, V. Irreversible electroporation in locally advanced pancreatic cancer: Potential improved overall survival. Ann. Surg. Oncol. 20, 443–449 (2013). [+]
Bertacchini, C. et al. Design of an irreversible electroporation system for clinical use. Technol. Cancer Res. Treat. 6, 313–320 (2007).

Zhang, Y. et al. MR imaging to assess immediate response to irreversible electroporation for targeted ablation of liver tissues: Preclinical feasibility studies in a rodent model. Radiology 256, 424–432 (2010).

Martin, R. C. G., McFarland, K., Ellis, S. & Velanovich, V. Irreversible electroporation in locally advanced pancreatic cancer: Potential improved overall survival. Ann. Surg. Oncol. 20, 443–449 (2013).

Sánchez-Velázquez, P. et al. Long-term effectiveness of irreversible electroporation in a murine model of colorectal liver metastasis. Sci. Rep. 7, 1–8 (2017).

Serša, G., Čemažar, M. & Miklavčič, D. Antitumor effectiveness of electrochemotherapy with cis-diamminedichloroplatinum(II) in mice. Cancer Res. 55, 3450–3455 (1995).

Miklavčič, D. et al. Electrochemotherapy: Technological advancements for efficient electroporation-based treatment of internal tumors. Med. Biol. Eng. Comput. 50, 1213–1225 (2012).

Calvet, C. Y. & Mir, L. M. The promising alliance of anti-cancer electrochemotherapy with immunotherapy. Cancer Metastasis Rev. 35, 165–177 (2016).

Ramirez, L. H. et al. Electrochemotherapy on liver tumours in rabbits. Br. J. Cancer. 77, 2104–2111 (1998).

Mir, L. M. et al. Standard operating procedures of the electrochemotherapy: Instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the CliniporatorTM by means of invasive or non-invasive electrodes. Eur. J. Cancer Suppl. 4, 14–25 (2006).

Clausen, T. & Gissel, H. Role of Na+, K+ pumps in restoring contractility following loss of cell membrane integrity in rat skeletal muscle. Acta Physiol. Scand. 183, 263–271 (2005).

Rols, M. P. & Teissié, J. Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys. J. 58, 1089–1098 (1990).

Gissel, H., Lee, R. C. & Gehl, J. Electroporation and cellular physiology. in Clinical Aspects of Electroporation 9–17 (Springer, 2011). https://doi.org/10.1007/978-1-4419-8363-3_2.

Batista Napotnik, T., Polajžer, T. & Miklavčič, D. Cell death due to electroporation—A review. Bioelectrochemistry 141, 107871 (2021).

Zhang, N. et al. Irreversible electroporation: An emerging immunomodulatory therapy on solid tumors. Front. Immunol. 12, 1–12 (2022).

Cannon, R., Ellis, S., Hayes, D., Narayanan, G. & Martin, R. C. G. Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures. J. Surg. Oncol. 107, 544–549 (2013).

Ivorra, A., Villemejane, J. & Mir, L. M. Electrical modeling of the influence of medium conductivity on electroporation. Phys. Chem. Chem. Phys. 12, 10055–10064 (2010).

Lv, Y. et al. A fundamental theoretical study on the different effect of electroporation on tumor blood vessels and normal blood vessels. Bioelectrochemistry 144, 1–9 (2022).

Rubinsky, B., Onik, G. & Mikus, P. Irreversible electroporation: A new ablation modality—Clinical implications. Technol. Cancer Res. Treat. 6, 37–48 (2007).

Gudvangen, E., Kim, V., Novickij, V., Battista, F. & Pakhomov, A. G. Electroporation and cell killing by milli- to nanosecond pulses and avoiding neuromuscular stimulation in cancer ablation. Sci. Rep. 12, 1763 (2022).

Murphy, K. R. et al. High-frequency irreversible electroporation brain tumor ablation: Exploring the dynamics of cell death and recovery. Bioelectrochemistry 144, 108001 (2022).

Hofmann, F. et al. Electric field pulses can induce apoptosis. J. Membr. Biol. 169, 103–109 (1999).

Maor, E. & Rubinsky, B. Endovascular nonthermal irreversible electroporation: A finite element analysis. J. Biomech. Eng. 132, 031008 (2010).

Pañella, C. et al. Focused transhepatic electroporation mediated by hypersaline infusion through the portal vein in rat model. Preliminary results on differential conductivity. Radiol. Oncol. 51, 415–421 (2017).

Isozaki, T. et al. Differential diagnosis of hepatic tumors by using contrast enhancement patterns at US. Radiology 229, 798–805 (2003).

Liu, Y. & Matsui, O. Changes of intratumoral microvessels and blood perfusion during establishment of hepatic metastases in mice. Radiology 243, 386–395 (2007).

Dezso, K. et al. Development of arterial blood supply in experimental liver metastases. Am. J. Pathol. 175, 835–843 (2009).

Castellví, Q., Sánchez-Velázquez, P., Berjano, E., Burdío, F. & Ivorra, A. Selective electroporation of liver tumor nodules by means of hypersaline infusion: A feasibility study. IFMBE Proc. 45, 821–824 (2015).

Pañella, C. et al. Hypersaline infusion protocol through the portal vein may focus electroporation on tumor tissue, but is it really safe? Preliminary results. Clin. Surg. 4, 1–5 (2019).

Breedis, C. & Young, G. The blood supply of neoplasms in the liver. Am. J. Pathol. 30, 969–977 (1954).

Qasrawi, R., Silve, L., Burdío, F., Abdeen, Z. & Ivorra, A. Anatomically realistic simulations of liver ablation by irreversible electroporation: impact of blood vessels on ablation volumes and undertreatment. Technol. Cancer Res. Treat. 16, 783–792 (2017).

Buy, X., Basile, A., Bierry, G., Cupelli, J. & Gangi, A. Saline-infused bipolar radiofrequency ablation of high-risk spinal and paraspinal neoplasms. Am. J. Roentgenol. 186(5 Suppl), S322–6 (2006).

Medicines, E. & Kingdom, U. Intravenous sugar solution. 2–4 (2019). https://en.wikipedia.org/wiki/Intravenous_sugar_solution.

Kitao, A., Zen, Y., Matsui, O., Gabata, T. & Nakanuma, Y. Hepatocarcinogenesis: Multistep changes of drainage vessels at CT during arterial portography and hepatic arteriography—Radiologic-pathologic correlation. Radiology 252, 605–614 (2009).

Lobo, D. N. et al. Dilution and redistribution effects of rapid 2-litre infusions of 0.9% (w/v) saline and 5% (w/v) dextrose on haematological parameters and serum biochemistry in normal subjects: A double-blind crossover study. Clin. Sci. 101, 173–179 (2001).

Whiteside, G. T. et al. Robustness of arterial blood gas analysis for assessment of respiratory safety pharmacology in rats. J. Pharmacol. Toxicol. Methods 78, 32–41 (2016).

Svorc, P., Petrášová, D. & Svorc, P. Arterial pH and blood gas values in rats under three types of general anesthesia: A chronobiological study. Physiol. Res. 67, 721–728 (2018).

Laporta, M. L., Sprung, J. & Weingarten, T. N. Respiratory depression in the post-anesthesia care unit: Mayo clinic experience. Bosn. J. Basic Med. Sci. 21, 221–228 (2021).

Else, S. D. N. & Kovatsis, P. G. A narrative review of oxygenation during pediatric intubation and airway procedures. Anesth. Analg. 130, 831–840 (2020).

Habre, W. et al. Incidence of severe critical events in paediatric anaesthesia (APRICOT): A prospective multicentre observational study in 261 hospitals in Europe. Lancet Respir. Med. 5, 412–425 (2017).

Morton, D. B. & Griffiths, P. H. Guidelines on the recognition of pain, distress and discomfort in experimental animals and an hypothesis for assessment. Vet. Rec. 116, 431–436 (1985).

Gurr, G. T. Biological staining methods. Biol. Stain. Methods. (1952). https://www.cabdirect.org/cabdirect/abstract/19532900366.

Fang, Z., Moser, M. A. J., Zhang, E. M., Zhang, W. & Zhang, B. A novel method to increase tumor ablation zones with rfa by injecting the cationic polymer solution to tissues: In vivo and computational studies. IEEE Trans. Biomed. Eng. 67, 1787–1796 (2020).

Shetty, S., Anushree, U., Kumar, R. & Bharati, S. Electrical conductivity spectra of hepatic tumors reflect hepatocellular carcinoma progression in mice. Biomed. Phys. Eng. Express 6, 065019 (2020).

Marčan, M., Kos, B. & Miklavčič, D. Effect of blood vessel segmentation on the outcome of electroporation-based treatments of liver tumors. PLoS One 10(5), e0125591 (2015).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem