Aonyas Serag and Nasear Hajer. 2022. 'The Effect of Using Silica Fume In High Strength Concrete On Workability And Compressive Strength: Review', Journal of Applied Science, (9), pp. 47-54.
ASTM International 2018 'ASTM C33/C33M, Standard Specification for Concrete Aggregates'. West Conshohocken: ASTM International.
ASTM International. 2019a. 'ASTM C192. "Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory,"'. West Conshohocken: ASTM International. Available at: https://www.astm.org/c0192_c0192m-14.html (Accessed: 14 March 2021).
[+]
Aonyas Serag and Nasear Hajer. 2022. 'The Effect of Using Silica Fume In High Strength Concrete On Workability And Compressive Strength: Review', Journal of Applied Science, (9), pp. 47-54.
ASTM International 2018 'ASTM C33/C33M, Standard Specification for Concrete Aggregates'. West Conshohocken: ASTM International.
ASTM International. 2019a. 'ASTM C192. "Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory,"'. West Conshohocken: ASTM International. Available at: https://www.astm.org/c0192_c0192m-14.html (Accessed: 14 March 2021).
ASTM International. 2019b. 'ASTM C494 / C494M, Standard Specification for Chemical Admixtures for Concrete'. West Conshohocken: ASTM International.
ASTM International. 2020a. 'ASTM C150 / C150M, Standard Specification for Portland Cement'. West Conshohocken: ASTM International.
ASTM International. 2020b. 'ASTM C1240, Standard Specification for Silica Fume Used in Cementitious Mixtures'. West Conshohocken: ASTM International.
Beshr, H., Almusallam, A.A., and Maslehuddin, M. 2003a. 'Effect of coarse aggregate quality on the mechanical properties of high strength concrete', Construction and Building Materials, 17(2), pp. 97-103. https://doi.org/10.1016/S0950-0618(02)00097-1
Beshr, H., Almusallam, A.A., and Maslehuddin, M. 2003b. 'Effect of coarse aggregate quality on the mechanical properties of high strength concrete', Construction and Building Materials, 17(2), pp. 97-103. https://doi.org/10.1016/S0950-0618(02)00097-1
Beushausen, H., and Dittmer, T. 2015. 'The influence of aggregate type on the strength and elastic modulus of high strength concrete', Construction and Building Materials, 74, pp. 132-139. https://doi.org/10.1016/j.conbuildmat.2014.08.055
De Larrard, F., and Belloc, A. 1992 'Are Small Aggregates Really Better for Making High-Strength Concrete?', Cement, Concrete and Aggregates, 14(1), p. 62. https://doi.org/10.1520/CCA10576J
Fiorato, A. 1989. 'PCA Research on High-Strength Concrete', Concrete International: Design & Construction, 11(4), pp. 44-50.
Giaccio, G., Rocco, C., Violini, D., Zappitelli, J., and Zerbino, R. 1992 'High-Strength Concretes Incorporating Different Coarse Aggregates', Materials, 89, pp. 242-246. https://doi.org/10.14359/2568
González-Fonteboa, B., Seara-Paz, S., de Brito, J., González-Taboada, I., Martínez-Abella, F., and Vasco-Silva, R. 2018. 'Recycled concrete with coarse recycled aggregate. An overview and analysis', Materiales de Construcción, 68(330), p. 151. https://doi.org/10.3989/mc.2018.13317
Góra, J., and Piasta, W. 2020. 'Impact of mechanical resistance of aggregate on properties of concrete', Case Studies in Construction Materials, 13, p. e00438. https://doi.org/10.1016/j.cscm.2020.e00438
Meddah, M.S., Zitouni, S., and Belâabes, S. 2010. 'Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete', Construction and Building Materials, 24(4), pp. 505-512. https://doi.org/10.1016/j.conbuildmat.2009.10.009
Mehta, P., Ezeldin, A. and Aitcin, P.-C. 1991. 'Effect of Coarse Aggregate on the Behavior of Normal and High-Strength Concretes', Cement, Concrete and Aggregates, 13(2), p. 121. https://doi.org/10.1520/CCA10128J
Mielenz Richard 1984 'History of chemical admixtures for concrete', Concrete International, 6(4), pp. 40-53.
Mohammed, N., Sarsam, K. and Hussien, M. 2018. 'The influence of recycled concrete aggregate on the properties of concrete', MATEC Web of Conferences, 162, p. 02020. https://doi.org/10.1051/matecconf/201816202020
Neville, A.M. and Brooks J. J. 2010. Concrete Technology. 2nd edn. Prentice Hall.
Özturan, T. and Çeçen, C. 1997 'Effect of coarse aggregate type on mechanical properties of concretes with different strengths', Cement and Concrete Research, 27(2), pp. 165-170. https://doi.org/10.1016/S0008-8846(97)00006-9
Parande, A.K. 2013 'Role of ingredients for high strength and high performance concrete - A review', Advances in concrete construction, 1(2), pp. 151-162. https://doi.org/10.12989/acc.2013.01.2.151
https://doi.org/10.12989/acc.2013.01.2.151
Singh, A., Duan, Z., Xiao, J., and Liu, Q. 2020 'Incorporating recycled aggregates in self-compacting concrete: a review', Journal of Sustainable Cement-Based Materials, 9(3), pp. 165-189. https://doi.org/10.1080/21650373.2019.1706205
Srikanth, G., Safiuddin, M., Haque, M.M., and Rizwan, M.. 2022 'Study on mechanical properties of concrete using different types of coarse aggregates', Materials Today: Proceedings, 65, pp. 2029-2033. https://doi.org/10.1016/j.matpr.2022.06.033
Tam, V.W.-Y., Gao, X.-F., and Tam, C.M. 2006 'Comparing performance of modified two-stage mixing approach for producing recycled aggregate concrete', Magazine of Concrete Research, 58(7), pp. 477-484. https://doi.org/10.1680/macr.2006.58.7.477
Tam, V.W.Y,. and Tam, C.M. 2007 'Assessment of durability of recycled aggregate concrete produced by two-stage mixing approach', in Journal of Materials Science, pp. 3592-3602. https://doi.org/10.1007/s10853-006-0379-y
Tam, V.W.Y., and Tam, C.M. 2008. 'Diversifying two-stage mixing approach (TSMA) for recycled aggregate concrete: TSMAs and TSMAsc', Construction and Building Materials, 22(10), pp. 2068-2077. https://doi.org/10.1016/j.conbuildmat.2007.07.024
Tam, V.W.Y., Tam, C.M., and Wang, Y. 2007. 'Optimization on proportion for recycled aggregate in concrete using two-stage mixing approach', Construction and Building Materials, 21(10), pp. 1928-1939. https://doi.org/10.1016/j.conbuildmat.2006.05.040
Tasong, W.A., Lynsdale, C.J., and Cripps, J.C. 1999. 'Aggregate-cement paste interface', Cement and Concrete Research, 29(7), pp. 1019-1025. https://doi.org/10.1016/S0008-8846(99)00086-1
Ullah, R., Qiang, Y., Ahmad, J., Vatin, N.I, and El-Shorbagy, M.A. 2022. "Ultra-High-Performance Concrete (UHPC): A State-of-the-Art Review" Materials, 15, no. 12: 4131. https://doi.org/10.3390/ma15124131
Vinay Kumar, B.M., Ananthan, H. and Balaji, K.V.A. 2018. 'Experimental studies on utilization of recycled coarse and fine aggregates in high performance concrete mixes', Alexandria Engineering Journal, 57(3), pp. 1749-1759. https://doi.org/10.1016/j.aej.2017.05.003
Vince Beiser. 2019. Why-the-world-is-running-out-of-sand, https://www.bbc.com/future/article/20191108-why-the-world-is-runningout-of-sand.
Wu, K.R., Chen, B., Yao, W., and Zhang, D. 2001a. 'Effect of coarse aggregate type on mechanical properties of high-performance concrete', Cement and Concrete Research, 31(10), pp. 1421-1425. https://doi.org/10.1016/S0008-8846(01)00588-9
Yehia, S., Helal, K., Abusharkh, A., Zaher, A., and Istaitiyeh, H. 2015. 'Strength and Durability Evaluation of Recycled Aggregate Concrete', International Journal of Concrete Structures and Materials, 9(2), pp. 219-239. https://doi.org/10.1007/s40069-015-0100-0
Zhao, H., Zhang, L., Wu, Z., Liu, A., and Imran, M. 2023. 'Aggregate effect on the mechanical and fracture behaviours of concrete', International Journal of Mechanical Sciences, 243, p. 108067. https://doi.org/10.1016/j.ijmecsci.2022.108067
[-]