- -

Evaluation of key aggregate parameters on the properties of ordinary and high strength concretes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of key aggregate parameters on the properties of ordinary and high strength concretes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Salas-Montoya, Andrés es_ES
dc.contributor.author Mira-Rada, Beatriz E. es_ES
dc.date.accessioned 2023-05-16T07:27:19Z
dc.date.available 2023-05-16T07:27:19Z
dc.date.issued 2023-05-11
dc.identifier.uri http://hdl.handle.net/10251/193411
dc.description.abstract [EN] This paper reports the results of a study conducted to determine the influence of coarse aggregate type on the workability, compressive strength, and flexural strength of normal and high strength concretes with target 28-day compressive strengths of 30 and 60 MPa and two water/cement ratios of 0.44 and 0.27. The concretes were prepared using four types of natural coarse aggregates, namely diabase, calcareous, river gravel, and basalt, with maximum particle sizes of 12.7 and 19.1 millimeters. Silica fume was added to the high-strength concretes at a replacement ratio to Portland cement of 10% by mass. The results showed that among all aggregates, basaltic aggregate with a maximum particle size of 12.7 millimeters produced concrete with the highest compressive and flexural strength, followed by limestone and river aggregate, indicating that particle size, surface texture, structure and mineralogical composition play a dominant role in the behavior of concretes, especially high strength concretes. Normal strength concretes showed similar compressive strengths, while the concrete containing limestone gave slightly higher strength. These results show that for a given water/cementitious material ratio, the influence of the type of coarse aggregate on the compressive strength of the concrete is more important for high strength concrete than for normal strength concrete. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof VITRUVIO - International Journal of Architectural Technology and Sustainability es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Coarse aggregate types es_ES
dc.subject Compressive and tensile strengths es_ES
dc.subject Silica fume es_ES
dc.subject High strength concrete es_ES
dc.title Evaluation of key aggregate parameters on the properties of ordinary and high strength concretes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/vitruvio-ijats.2023.19596
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Salas-Montoya, A.; Mira-Rada, BE. (2023). Evaluation of key aggregate parameters on the properties of ordinary and high strength concretes. VITRUVIO - International Journal of Architectural Technology and Sustainability. 8:76-85. https://doi.org/10.4995/vitruvio-ijats.2023.19596 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/vitruvio-ijats.2023.19596 es_ES
dc.description.upvformatpinicio 76 es_ES
dc.description.upvformatpfin 85 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.identifier.eissn 2444-9091
dc.relation.pasarela OJS\19596 es_ES
dc.description.references Aonyas Serag and Nasear Hajer. 2022. 'The Effect of Using Silica Fume In High Strength Concrete On Workability And Compressive Strength: Review', Journal of Applied Science, (9), pp. 47-54. es_ES
dc.description.references ASTM International 2018 'ASTM C33/C33M, Standard Specification for Concrete Aggregates'. West Conshohocken: ASTM International. es_ES
dc.description.references ASTM International. 2019a. 'ASTM C192. "Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory,"'. West Conshohocken: ASTM International. Available at: https://www.astm.org/c0192_c0192m-14.html (Accessed: 14 March 2021). es_ES
dc.description.references ASTM International. 2019b. 'ASTM C494 / C494M, Standard Specification for Chemical Admixtures for Concrete'. West Conshohocken: ASTM International. es_ES
dc.description.references ASTM International. 2020a. 'ASTM C150 / C150M, Standard Specification for Portland Cement'. West Conshohocken: ASTM International. es_ES
dc.description.references ASTM International. 2020b. 'ASTM C1240, Standard Specification for Silica Fume Used in Cementitious Mixtures'. West Conshohocken: ASTM International. es_ES
dc.description.references Beshr, H., Almusallam, A.A., and Maslehuddin, M. 2003a. 'Effect of coarse aggregate quality on the mechanical properties of high strength concrete', Construction and Building Materials, 17(2), pp. 97-103. https://doi.org/10.1016/S0950-0618(02)00097-1 es_ES
dc.description.references Beshr, H., Almusallam, A.A., and Maslehuddin, M. 2003b. 'Effect of coarse aggregate quality on the mechanical properties of high strength concrete', Construction and Building Materials, 17(2), pp. 97-103. https://doi.org/10.1016/S0950-0618(02)00097-1 es_ES
dc.description.references Beushausen, H., and Dittmer, T. 2015. 'The influence of aggregate type on the strength and elastic modulus of high strength concrete', Construction and Building Materials, 74, pp. 132-139. https://doi.org/10.1016/j.conbuildmat.2014.08.055 es_ES
dc.description.references De Larrard, F., and Belloc, A. 1992 'Are Small Aggregates Really Better for Making High-Strength Concrete?', Cement, Concrete and Aggregates, 14(1), p. 62. https://doi.org/10.1520/CCA10576J es_ES
dc.description.references Fiorato, A. 1989. 'PCA Research on High-Strength Concrete', Concrete International: Design & Construction, 11(4), pp. 44-50. es_ES
dc.description.references Giaccio, G., Rocco, C., Violini, D., Zappitelli, J., and Zerbino, R. 1992 'High-Strength Concretes Incorporating Different Coarse Aggregates', Materials, 89, pp. 242-246. https://doi.org/10.14359/2568 es_ES
dc.description.references González-Fonteboa, B., Seara-Paz, S., de Brito, J., González-Taboada, I., Martínez-Abella, F., and Vasco-Silva, R. 2018. 'Recycled concrete with coarse recycled aggregate. An overview and analysis', Materiales de Construcción, 68(330), p. 151. https://doi.org/10.3989/mc.2018.13317 es_ES
dc.description.references Góra, J., and Piasta, W. 2020. 'Impact of mechanical resistance of aggregate on properties of concrete', Case Studies in Construction Materials, 13, p. e00438. https://doi.org/10.1016/j.cscm.2020.e00438 es_ES
dc.description.references Meddah, M.S., Zitouni, S., and Belâabes, S. 2010. 'Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete', Construction and Building Materials, 24(4), pp. 505-512. https://doi.org/10.1016/j.conbuildmat.2009.10.009 es_ES
dc.description.references Mehta, P., Ezeldin, A. and Aitcin, P.-C. 1991. 'Effect of Coarse Aggregate on the Behavior of Normal and High-Strength Concretes', Cement, Concrete and Aggregates, 13(2), p. 121. https://doi.org/10.1520/CCA10128J es_ES
dc.description.references Mielenz Richard 1984 'History of chemical admixtures for concrete', Concrete International, 6(4), pp. 40-53. es_ES
dc.description.references Mohammed, N., Sarsam, K. and Hussien, M. 2018. 'The influence of recycled concrete aggregate on the properties of concrete', MATEC Web of Conferences, 162, p. 02020. https://doi.org/10.1051/matecconf/201816202020 es_ES
dc.description.references Neville, A.M. and Brooks J. J. 2010. Concrete Technology. 2nd edn. Prentice Hall. es_ES
dc.description.references Özturan, T. and Çeçen, C. 1997 'Effect of coarse aggregate type on mechanical properties of concretes with different strengths', Cement and Concrete Research, 27(2), pp. 165-170. https://doi.org/10.1016/S0008-8846(97)00006-9 es_ES
dc.description.references Parande, A.K. 2013 'Role of ingredients for high strength and high performance concrete - A review', Advances in concrete construction, 1(2), pp. 151-162. https://doi.org/10.12989/acc.2013.01.2.151 es_ES
dc.description.references https://doi.org/10.12989/acc.2013.01.2.151 es_ES
dc.description.references Singh, A., Duan, Z., Xiao, J., and Liu, Q. 2020 'Incorporating recycled aggregates in self-compacting concrete: a review', Journal of Sustainable Cement-Based Materials, 9(3), pp. 165-189. https://doi.org/10.1080/21650373.2019.1706205 es_ES
dc.description.references Srikanth, G., Safiuddin, M., Haque, M.M., and Rizwan, M.. 2022 'Study on mechanical properties of concrete using different types of coarse aggregates', Materials Today: Proceedings, 65, pp. 2029-2033. https://doi.org/10.1016/j.matpr.2022.06.033 es_ES
dc.description.references Tam, V.W.-Y., Gao, X.-F., and Tam, C.M. 2006 'Comparing performance of modified two-stage mixing approach for producing recycled aggregate concrete', Magazine of Concrete Research, 58(7), pp. 477-484. https://doi.org/10.1680/macr.2006.58.7.477 es_ES
dc.description.references Tam, V.W.Y,. and Tam, C.M. 2007 'Assessment of durability of recycled aggregate concrete produced by two-stage mixing approach', in Journal of Materials Science, pp. 3592-3602. https://doi.org/10.1007/s10853-006-0379-y es_ES
dc.description.references Tam, V.W.Y., and Tam, C.M. 2008. 'Diversifying two-stage mixing approach (TSMA) for recycled aggregate concrete: TSMAs and TSMAsc', Construction and Building Materials, 22(10), pp. 2068-2077. https://doi.org/10.1016/j.conbuildmat.2007.07.024 es_ES
dc.description.references Tam, V.W.Y., Tam, C.M., and Wang, Y. 2007. 'Optimization on proportion for recycled aggregate in concrete using two-stage mixing approach', Construction and Building Materials, 21(10), pp. 1928-1939. https://doi.org/10.1016/j.conbuildmat.2006.05.040 es_ES
dc.description.references Tasong, W.A., Lynsdale, C.J., and Cripps, J.C. 1999. 'Aggregate-cement paste interface', Cement and Concrete Research, 29(7), pp. 1019-1025. https://doi.org/10.1016/S0008-8846(99)00086-1 es_ES
dc.description.references Ullah, R., Qiang, Y., Ahmad, J., Vatin, N.I, and El-Shorbagy, M.A. 2022. "Ultra-High-Performance Concrete (UHPC): A State-of-the-Art Review" Materials, 15, no. 12: 4131. https://doi.org/10.3390/ma15124131 es_ES
dc.description.references Vinay Kumar, B.M., Ananthan, H. and Balaji, K.V.A. 2018. 'Experimental studies on utilization of recycled coarse and fine aggregates in high performance concrete mixes', Alexandria Engineering Journal, 57(3), pp. 1749-1759. https://doi.org/10.1016/j.aej.2017.05.003 es_ES
dc.description.references Vince Beiser. 2019. Why-the-world-is-running-out-of-sand, https://www.bbc.com/future/article/20191108-why-the-world-is-runningout-of-sand. es_ES
dc.description.references Wu, K.R., Chen, B., Yao, W., and Zhang, D. 2001a. 'Effect of coarse aggregate type on mechanical properties of high-performance concrete', Cement and Concrete Research, 31(10), pp. 1421-1425. https://doi.org/10.1016/S0008-8846(01)00588-9 es_ES
dc.description.references Yehia, S., Helal, K., Abusharkh, A., Zaher, A., and Istaitiyeh, H. 2015. 'Strength and Durability Evaluation of Recycled Aggregate Concrete', International Journal of Concrete Structures and Materials, 9(2), pp. 219-239. https://doi.org/10.1007/s40069-015-0100-0 es_ES
dc.description.references Zhao, H., Zhang, L., Wu, Z., Liu, A., and Imran, M. 2023. 'Aggregate effect on the mechanical and fracture behaviours of concrete', International Journal of Mechanical Sciences, 243, p. 108067. https://doi.org/10.1016/j.ijmecsci.2022.108067 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem