- -

Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance Images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance Images

Mostrar el registro completo del ítem

Veiga-Canuto, D.; Cerdà-Alberich, L.; Sangüesa Nebot, C.; Martínez De Las Heras, B.; Pötschger, U.; Gabelloni, M.; Carot Sierra, JM.... (2022). Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance Images. Cancers. 14(15):1-15. https://doi.org/10.3390/cancers14153648

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/193435

Ficheros en el ítem

Metadatos del ítem

Título: Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance Images
Autor: Veiga-Canuto, Diana Cerdà-Alberich, Leonor Sangüesa Nebot, Cinta Martínez de las Heras, Blanca Pötschger, Ulrique Gabelloni, Michela Carot Sierra, José Miguel Taschner-Mandl, Sabine Düster, Vanessa Cañete, Adela Ladenstein, Ruth Neri, Emanuele Marti-Bonmati, Luis
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Fecha difusión:
Resumen:
[EN] Simple Summary Tumor segmentation is a key step in oncologic imaging processing and is a time-consuming process usually performed manually by radiologists. To facilitate it, there is growing interest in applying ...[+]
Palabras clave: Tumor segmentation , Neuroblastic tumors , Deep learning , Manual segmentation , Automatic segmentation , Inter-observer variability
Derechos de uso: Reconocimiento (by)
Fuente:
Cancers. (eissn: 2072-6694 )
DOI: 10.3390/cancers14153648
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/cancers14153648
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/826494/EU
Agradecimientos:
This study was funded by PRIMAGE (PRedictive In silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, empowered by imaging biomarkers), a Horizon 2020 | RIA project (Topic SC1-DTH-07-2018), ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem