- -

Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance Images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance Images

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Veiga-Canuto, Diana es_ES
dc.contributor.author Cerdà-Alberich, Leonor es_ES
dc.contributor.author Sangüesa Nebot, Cinta es_ES
dc.contributor.author Martínez de las Heras, Blanca es_ES
dc.contributor.author Pötschger, Ulrique es_ES
dc.contributor.author Gabelloni, Michela es_ES
dc.contributor.author Carot Sierra, José Miguel es_ES
dc.contributor.author Taschner-Mandl, Sabine es_ES
dc.contributor.author Düster, Vanessa es_ES
dc.contributor.author Cañete, Adela es_ES
dc.contributor.author Ladenstein, Ruth es_ES
dc.contributor.author Neri, Emanuele es_ES
dc.contributor.author Marti-Bonmati, Luis es_ES
dc.date.accessioned 2023-05-16T18:01:11Z
dc.date.available 2023-05-16T18:01:11Z
dc.date.issued 2022-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/193435
dc.description.abstract [EN] Simple Summary Tumor segmentation is a key step in oncologic imaging processing and is a time-consuming process usually performed manually by radiologists. To facilitate it, there is growing interest in applying deep-learning segmentation algorithms. Thus, we explore the variability between two observers performing manual segmentation and use the state-of-the-art deep learning architecture nnU-Net to develop a model to detect and segment neuroblastic tumors on MR images. We were able to show that the variability between nnU-Net and manual segmentation is similar to the inter-observer variability in manual segmentation. Furthermore, we compared the time needed to manually segment the tumors from scratch with the time required for the automatic model to segment the same cases, with posterior human validation with manual adjustment when needed. Tumor segmentation is one of the key steps in imaging processing. The goals of this study were to assess the inter-observer variability in manual segmentation of neuroblastic tumors and to analyze whether the state-of-the-art deep learning architecture nnU-Net can provide a robust solution to detect and segment tumors on MR images. A retrospective multicenter study of 132 patients with neuroblastic tumors was performed. Dice Similarity Coefficient (DSC) and Area Under the Receiver Operating Characteristic Curve (AUC ROC) were used to compare segmentation sets. Two more metrics were elaborated to understand the direction of the errors: the modified version of False Positive (FPRm) and False Negative (FNR) rates. Two radiologists manually segmented 46 tumors and a comparative study was performed. nnU-Net was trained-tuned with 106 cases divided into five balanced folds to perform cross-validation. The five resulting models were used as an ensemble solution to measure training (n = 106) and validation (n = 26) performance, independently. The time needed by the model to automatically segment 20 cases was compared to the time required for manual segmentation. The median DSC for manual segmentation sets was 0.969 (+/- 0.032 IQR). The median DSC for the automatic tool was 0.965 (+/- 0.018 IQR). The automatic segmentation model achieved a better performance regarding the FPRm. MR images segmentation variability is similar between radiologists and nnU-Net. Time leverage when using the automatic model with posterior visual validation and manual adjustment corresponds to 92.8%. es_ES
dc.description.sponsorship This study was funded by PRIMAGE (PRedictive In silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, empowered by imaging biomarkers), a Horizon 2020 | RIA project (Topic SC1-DTH-07-2018), grant agreement no: 826494. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Cancers es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Tumor segmentation es_ES
dc.subject Neuroblastic tumors es_ES
dc.subject Deep learning es_ES
dc.subject Manual segmentation es_ES
dc.subject Automatic segmentation es_ES
dc.subject Inter-observer variability es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance Images es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/cancers14153648 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/826494/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Veiga-Canuto, D.; Cerdà-Alberich, L.; Sangüesa Nebot, C.; Martínez De Las Heras, B.; Pötschger, U.; Gabelloni, M.; Carot Sierra, JM.... (2022). Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance Images. Cancers. 14(15):1-15. https://doi.org/10.3390/cancers14153648 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/cancers14153648 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 15 es_ES
dc.identifier.eissn 2072-6694 es_ES
dc.identifier.pmid 35954314 es_ES
dc.identifier.pmcid PMC9367307 es_ES
dc.relation.pasarela S\471675 es_ES
dc.contributor.funder European Commission es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem