- -

Synthesis of Gold Nanoparticles and Incorporation to a Porous Nickel Electrode to Improve its Catalytic Performance Towards the Hydrogen Evolution Reaction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of Gold Nanoparticles and Incorporation to a Porous Nickel Electrode to Improve its Catalytic Performance Towards the Hydrogen Evolution Reaction

Mostrar el registro completo del ítem

Medina-Orta, R.; Labrada-Delgado, GJ.; Silva-Pereyra, HG.; Ortega Navarro, EM.; Pérez-Herranz, V.; Sánchez-Loredo, MG. (2022). Synthesis of Gold Nanoparticles and Incorporation to a Porous Nickel Electrode to Improve its Catalytic Performance Towards the Hydrogen Evolution Reaction. Electrocatalysis. 13(1):47-61. https://doi.org/10.1007/s12678-021-00690-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/193458

Ficheros en el ítem

Metadatos del ítem

Título: Synthesis of Gold Nanoparticles and Incorporation to a Porous Nickel Electrode to Improve its Catalytic Performance Towards the Hydrogen Evolution Reaction
Autor: Medina-Orta, Ramiro Labrada-Delgado, Gladis J. Silva-Pereyra, Héctor G. Ortega Navarro, Emma María Pérez-Herranz, Valentín Sánchez-Loredo, María Guadalupe
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Fecha difusión:
Resumen:
[EN] Gold nanoparticles (AuNPs) were successfully synthesized by a facile chemical reduction method in the presence of the stabilizer polyvinylpyrrolidone and characterized by UV-vis spectroscopy and transmission electron ...[+]
Palabras clave: Porous Ni electrodes , Au nanoparticles , Chemical synthesis , Hydrogen evolution reaction (HER) , Catalysis
Derechos de uso: Reserva de todos los derechos
Fuente:
Electrocatalysis. (issn: 1868-2529 )
DOI: 10.1007/s12678-021-00690-7
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s12678-021-00690-7
Código del Proyecto:
info:eu-repo/grantAgreement/COPOCYT//472041/
Agradecimientos:
Ramiro Medina Orta is grateful to Consejo Nacional Ciencia y Tecnologia and Consejo Potosino de Ciencia y Tecnologia for the doctorate scholarship 472041. Also, he wishes to thank the Instituto de Metalurgia of Universidad ...[+]
Tipo: Artículo

References

M.A. El-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34, 257–264 (2001)

E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583–592 (2006). https://doi.org/10.1039/b502142c

J. Belloni, Metal nanocolloids. Curr. Opin. Colloid Interface Sci. 1, 184–196 (1996). https://doi.org/10.1016/S1359-0294(96)80003-3 [+]
M.A. El-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34, 257–264 (2001)

E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583–592 (2006). https://doi.org/10.1039/b502142c

J. Belloni, Metal nanocolloids. Curr. Opin. Colloid Interface Sci. 1, 184–196 (1996). https://doi.org/10.1016/S1359-0294(96)80003-3

R. Narayanan, M.A. El-Sayed, Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J. Phys. Chem. B. 109, 12663–12676 (2005)

F. Pagnanelli, P. Altimari, M. Bellagamba, G. Granata, E. Moscardini, P.G. Schiavi, L. Toro, Pulsed electrodeposition of cobalt nanoparticles on copper: influence of the operating parameters on size distribution and morphology. Electrochim. Acta. 155, 228–235 (2015). https://doi.org/10.1016/j.electacta.2014.12.112

Q. Wang, J. Zheng, Electrodeposition of silver nanoparticles on a zinc oxide film: Improvement of amperometric sensing sensitivity and stability for hydrogen peroxide determination. Microchim. Acta. 169, 361–365 (2010). https://doi.org/10.1007/s00604-010-0356-7

L. Rodríguez-Sánchez, M.C. Blanco, M.A. López-Quintela, Electrochemical synthesis of silver nanoparticles. J. Phys. Chem. B. 104, 9683–9688 (2000). https://doi.org/10.1021/jp001761r

P.M. Uberman, L.A. Pérez, G.I. Lacconi, S.E. Martín, PVP-stabilized palladium nanoparticles electrochemically obtained as effective catalysts in aqueous medium Suzuki-Miyaura reaction. J. Mol. Catal. A Chem. 363–364, 245–253 (2012). https://doi.org/10.1016/j.molcata.2012.06.016

W. Pan, X. Zhang, H. Ma, J. Zhang, Electrochemical synthesis, voltammetric behavior, and electrocatalytic activity of Pd nanoparticles. J. Phys. Chem. C. 112, 2456–2461 (2008). https://doi.org/10.1021/jp710092z

B. Yin, H. Ma, S. Wang, S. Chen, Electrochemical synthesis of silver nanoparticles under protection of poly(n-vinylpyrrolidone). J. Phys. Chem. B. 107, 8898–8904 (2003). https://doi.org/10.1021/jp0349031

K.B. Narayanan, N. Sakthivel, Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol. J. Hazard. Mater. 189, 519–525 (2011). https://doi.org/10.1016/j.jhazmat.2011.02.069

H. Veisi, S. Azizi, P. Mohammadi, Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water. J. Clean. Prod. 170, 1536–1543 (2018). https://doi.org/10.1016/j.jclepro.2017.09.265

Y. Wang, D. O’Connor, Z. Shen, I.M.C. Lo, D.C.W. Tsang, S. Pehkonen, S. Pu, D. Hou, Green synthesis of nanoparticles for the remediation of contaminated waters and soils: constituents, synthesizing methods, and influencing factors. J. Clean. Prod. 226, 540–549 (2019). https://doi.org/10.1016/j.jclepro.2019.04.128

M. Teimouri, F. Khosravi-Nejad, F. Attar, A.A. Saboury, I. Kostova, G. Benelli, M. Falahati, Gold nanoparticles fabrication by plant extracts: synthesis, characterization, degradation of 4-nitrophenol from industrial wastewater, and insecticidal activity – a review. J. Clean. Prod. 184, 740–753 (2018). https://doi.org/10.1016/j.jclepro.2018.02.268

I. Pedre, F. Battaglini, G.J. Labrada-Delgado, M.G. Sánchez-Loredo, G.A. González, Detection of thiourea from electrorefining baths using silver nanoparticles-based sensors, sensors actuators. B Chem. 211, 515–522 (2015). https://doi.org/10.1016/j.snb.2015.01.074

N.R. Jana, Z.L. Wang, T. Pal, Redox catalytic properties of palladium nanoparticles: surfactant and electron donor-acceptor effects. Langmuir 16, 2457–2463 (2000). https://doi.org/10.1021/la990507r

R. Fenger, E. Fertitta, H. Kirmse, A.F. Thünemann, K. Rademann, Size dependent catalysis with CTAB-stabilized gold nanoparticles. Phys. Chem. Chem. Phys. 14, 9343–9349 (2012). https://doi.org/10.1039/c2cp40792b

C. Huff, T. Dushatinski, T.M. Abdel-Fattah, Gold nanoparticle/multi-walled carbon nanotube composite as novel catalyst for hydrogen evolution reactions. Int. J. Hydrogen Energy. 42, 18985–18990 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.226

C. González-Buch, I. Herraiz-Cardona, E.M. Ortega, S. Mestre, V. Pérez-Herranz, Synthesis and characterization of Au-modified macroporous Ni electrocatalysts for alkaline water electrolysis. Int. J. Hydrogen Energy. 41, 764–772 (2016). https://doi.org/10.1016/j.ijhydene.2015.10.142

M.A. Amin, S.A. Fadlallah, G.S. Alosaimi, In situ aqueous synthesis of silver nanoparticles supported on titanium as active electrocatalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy. 39, 19519–19540 (2014). https://doi.org/10.1016/j.ijhydene.2014.09.100

M.A. Amin, S.A. Fadlallah, G.S. Alosaimi, F. Kandemirli, M. Saracoglu, S. Szunerits, R. Boukherroub, Cathodic activation of titanium-supported gold nanoparticles: an efficient and stable electrocatalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy. 41, 6326–6341 (2016). https://doi.org/10.1016/j.ijhydene.2016.02.107

V. Pérez-Herranz, R. Medina, P. Taymans, C. González-Buch, E.M. Ortega, G. Sánchez-Loredo, G.J. Labrada-Delgado, Modification of porous nickel electrodes with silver nanoparticles for hydrogen production. J. Electroanal. Chem. 808, 420–426 (2018). https://doi.org/10.1016/j.jelechem.2017.06.022

T.N. Veziroǧlu, S. Şahin, 21st century’s energy: hydrogen energy system. Energy Convers. Manag. 49, 1820–1831 (2008). https://doi.org/10.1016/j.enconman.2007.08.015

K. Mazloomi, C. Gomes, Hydrogen as an energy carrier: prospects and challenges. Renew. Sustain. Energy Rev. 16, 3024–3033 (2012). https://doi.org/10.1016/j.rser.2012.02.028

J.O.M. Bockris, T.N. Veziroǧlu, A solar-hydrogen economy for U.S.A., Int. J. Hydrogen Energy. 8, 323–340 (1983). https://doi.org/10.1016/0360-3199(83)90048-4.

F. Barbir, Transition to renewable energy systems with hydrogen as an energy carrier. Energy 34, 308–312 (2009). https://doi.org/10.1016/j.energy.2008.07.007

A. Lasia, A. Rami, Kinetics of hydrogen evolution on nickel electrodes. J. Electroanal. Chem. 294, 123–141 (1990). https://doi.org/10.1016/0022-0728(90)87140-F

Y. Choquette, L. Brossard, A. Lasia, H. Ménard, Investigation Raney-nickel electrodes. Electrochem. Acta. 35, 1251–1256 (1990)

R. Solmaz, A. Döner, G. Kardaş, The stability of hydrogen evolution activity and corrosion behavior of NiCu coatings with long-term electrolysis in alkaline solution. Int. J. Hydrogen Energy. 34, 2089–2094 (2009). https://doi.org/10.1016/j.ijhydene.2009.01.007

I. Arul-Raj, V.K. Venkatesan, Characterization of nickel-molybdenum and nickel-molybdenum-iron alloy coatings as cathodes for alkaline water electrolysers. Int. J. Hydrogen Energy. 13, 215–223 (1988). https://doi.org/10.1016/0360-3199(88)90088-2

E. Navarro-Flores, Z. Chong, S. Omanovic, Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J. Mol. Catal. A Chem. 226, 179–197 (2005). https://doi.org/10.1016/j.molcata.2004.10.029

I. Herraiz-Cardona, E.M. Ortega, L. Vázquez-Gómez, V. Pérez-Herranz, Electrochemical characterization of a NiCo/Zn cathode for hydrogen generation. Int. J. Hydrogen Energy. 36, 11578–11587 (2011). https://doi.org/10.1016/j.ijhydene.2011.06.067

I. Herraiz-Cardona, E.M. Ortega, L. Vázquez-Gómez, V. Pérez-Herranz, Double-template fabrication of three-dimensional porous nickel electrodes for hydrogen evolution reaction. Int. J. Hydrogen Energy. 37, 2147–2156 (2012). https://doi.org/10.1016/j.ijhydene.2011.09.155

C. González-Buch, I. Herraiz-Cardona, E.M. Ortega, J. García-Antón, V. Pérez-Herranz, Synthesis and characterization of macroporous Ni, Co and Ni-Co electrocatalytic deposits for hydrogen evolution reaction in alkaline media. Int. J. Hydrogen Energy. 38, 10157–10169 (2013). https://doi.org/10.1016/j.ijhydene.2013.06.016

J. Kim, S. Byun, A.J. Smith, J. Yu, J. Huang, Enhanced electrocatalytic properties of transition-metal dichalcogenides sheets by spontaneous gold nanoparticle decoration. J. Phys. Chem. Lett. 4, 1227–1232 (2013). https://doi.org/10.1021/jz400507t

D. Li, J. Lao, C. Jiang, C. Luo, R. Qi, H. Lin, R. Huang, G.I.N. Waterhouse, H. Peng, Plasmonic Au nanoparticle-decorated Bi2Se3 nanoflowers with outstanding electrocatalytic performance for hydrogen evolution. Int. J. Hydrogen Energy. 44, 30876–30884 (2019). https://doi.org/10.1016/j.ijhydene.2019.10.041

D. Balun-Kayan, D. Koçak, M. İlhan, Electrocatalytic hydrogen production on GCE/RGO/Au hybrid electrode. Int. J. Hydrogen Energy. 43, 10562–10568 (2018). https://doi.org/10.1016/j.ijhydene.2018.01.077

Y. Pan, M. Wen, Noble metals enhanced catalytic activity of anatase TiO2 for hydrogen evolution reaction. Int. J. Hydrogen Energy. 43, 22055–22063 (2018). https://doi.org/10.1016/j.ijhydene.2018.10.093

C. González-Buch, I. Herraiz-Cardona, E.M. Ortega, J. García-Antón, V. Pérez-Herranz, Study of the catalytic activity of 3D macroporous Ni and NiMo cathodes for hydrogen production by alkaline water electrolysis. J. Appl. Electrochem. 46, 791–803 (2016). https://doi.org/10.1007/s10800-016-0970-0

R.S. Sai Siddhardha, V. Lakshminarayanan, S.S. Ramamurthy, Spot-free catalysis using gold carbon nanotube & gold graphene composites for hydrogen evolution reaction, J. Power Sources. 288, 441–450 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.141

G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Der Physic. 330, 377–445 (1908). https://doi.org/10.1002/andp.19083300302

K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalt. Trans. 44, 17883–17905 (2015). https://doi.org/10.1039/c5dt02964c

R. Si, Y.W. Zhang, L.P. You, C.H. Yan, Self-organized monolayer of nanosized ceria colloids stabilized by poly(vinylpyrrolidone). J. Phys. Chem. B. 110, 5994–6000 (2006). https://doi.org/10.1021/jp057501x

Y. Gao, P. Jiang, D.F. Liu, H.J. Yuan, X.Q. Yan, Z.P. Zhou, J.X. Wang, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, C.Y. Wang, S.S. Xie, J.M. Zhang, D.Y. Shen, Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires. J. Phys. Chem. B. 108, 12877–12881 (2004). https://doi.org/10.1021/jp037116c

X.L. Tang, P. Jiang, G.L. Ge, M. Tsuji, S.S. Xie, Y.J. Guo, Poly(N-vinyl-2-pyrrolidone) (PVP)-capped dendritic gold nanoparticles by a one-step hydrothermal route and their high SERS effect. Langmuir 24, 1763–1768 (2008). https://doi.org/10.1021/la703495s

H.H. Huang, X.P. Ni, G.L. Loy, C.H. Chew, K.L. Tan, F.C. Loh, J.F. Deng, G.Q. Xu, Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone). Langmuir 12, 909–912 (1996). https://doi.org/10.1021/la950435d

F. Bonet, K. Tekaia-Elhsissen, K. Vijaya-Sarathy, Study of interaction of ethylene glycol/PVP phase on noble metal powders prepared by polyol process. Bull. Mater. Sci. 23, 165–168 (2000). https://doi.org/10.1007/BF02719903

G. Carotenuto, G.P. Pepe, L. Nicolais, Preparation and characterization of nano-sized Ag / PVP. Eur. Phys. J. B. 16, 11–17 (2000)

G. Carotenuto, S. DeNicola, G.P. Pepe, L. Nicolais, A qualitative model for the growth mechanism of silver clusters in polymer solution. Eur. Phys. J. B. 24, 437–441 (2001). https://doi.org/10.1007/s10051-001-8696-z

Z. Chen, J.W. Chang, C. Balasanthiran, S.T. Milner, R.M. Rioux, Anisotropic growth of silver nanoparticles is kinetically controlled by polyvinylpyrrolidone binding. J. Am. Chem. Soc. 141, 4328–4337 (2019). https://doi.org/10.1021/jacs.8b11295

C. Chen, D.Y.W. Ng, T. Weil, Polymer-grafted gold nanoflowers with temperature-controlled catalytic features by: in situ particle growth and polymerization. Mater. Chem. Front. 3, 1449–1453 (2019). https://doi.org/10.1039/c9qm00252a

M.F. Kibria, M.S. Mridha, A.H. Khan, Electrochemical studies of a nickel electrode for the hydrogen evolution reaction. Int. J. Hydrogen Energy. 20, 435–440 (1995). https://doi.org/10.1016/0360-3199(94)00073-9

A. Rami, A. Lasia, Kinetics of hydrogen evolution on Ni-AI alloy electrodes. J. Appl. Electrochem. 22, 376 (1992). https://doi.org/10.1007/BF01092692

L.A. Khanova, L.I. Krishtalik, Kinetics of the hydrogen evolution reaction on gold electrode. A new case of the barrierless discharge, J. Electroanal. Chem. 660, 224–229 (2011). https://doi.org/10.1016/j.jelechem.2011.01.016

T. Ohmori, M. Enyo, Hydrogen evolution reaction on gold electrode in alkaline solutions. Electrochim. Acta. 37, 2021–2028 (1992). https://doi.org/10.1016/0013-4686(92)87118-J

A. Kahyarian, B. Brown, S. Nesic, Mechanism of the hydrogen evolution reaction in mildly acidic environments on gold. J. Electrochem. Soc. 164, H365–H374 (2017). https://doi.org/10.1149/2.1061706jes

A. Lasia, Hydrogen evolution reaction, in: Handb. Fuel Cells, John Wiley & Sons, Ltd, Chichester, UK, (2010). https://doi.org/10.1002/9780470974001.f204033

A.N. Correia, S.A.S. Machado, Hydrogen evolution on electrodeposited Ni and Hg ultramicroelectrodes. Electrochim. Acta. 43, 367–373 (1998). https://doi.org/10.1016/S0013-4686(97)00050-9

O. Savadogo, E. Ndzebet, Influence of SiW12O404- on the electrocatalytic behaviour of Pt-Co alloy supported on carbon for water electrolysis in 3 M KOH aqueous solution. Int. J. Hydrogen Energy. 26, 213–218 (2001). https://doi.org/10.1016/S0360-3199(00)00059-8

S.A.S. Machado, L.A. Avaca, The hydrogen evolution reaction on nickel surfaces stabilized by H-absorption. Electrochim. Acta. 39, 1385–1391 (1994). https://doi.org/10.1016/0013-4686(94)E0003-I

B.E. Conway, L. Bai, H2 evolution kinetics at high activity Ni-Mo-Cd electrocoated cathodes and its relation to potential dependence of sorption of H. Int. J. Hydrogen Energy. 11, 533–540 (1986). https://doi.org/10.1016/0360-3199(86)90020-0

L. Birry, A. Lasia, Studies of the hydrogen evolution reaction on Raney nickel-molybdenum electrodes. J. Appl. Electrochem. 34, 735–749 (2004)

C. Hitz, A. Lasia, Experimental study and modeling of impedance of porous electrodes. J. Electroanal. Chem. 500, 213–222 (2001)

R. de Levie, in P. Delahay (Ed.), Advances in electrochemistry and electrochemical engineering. Interscience, New York. 6, 329 (1967).

L. Chen, A. Lasia, Study of the kinetics of hydrogen evolution reaction on nickel-zinc powder electrodes. J. Electrochem. Soc. 139, 3214–3219 (1992). https://doi.org/10.1149/1.2069055

R.D. Armstrong, M. Henderson, Impedance plane display of a reaction with an adsorbed intermediate, Electroanal. Chem. Interfacial. Electrochem. 39, 81–90 (1972)

G.J. Brug, a. L.G. van den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. 176, 275–295 (1984). https://doi.org/10.1016/S0022-0728(84)80324-1

I. Herraiz-Cardona, E.M. Ortega, J. García-Antón, V. Pérez-Herranz, Assessment of the roughness factor effect and the intrinsic catalytic activity for hydrogen evolution reaction on Ni-based electrodeposits. Int. J. Hydrogen Energy. 36, 9428–9438 (2011). https://doi.org/10.1016/j.ijhydene.2011.05.047

I. Herraiz-Cardona, E. Ortega, V. Pérez-Herranz, Impedance study of hydrogen evolution on Ni/Zn and Ni-Co/Zn stainless steel based electrodeposits. Electrochim. Acta. 56, 1308–1315 (2011). https://doi.org/10.1016/j.electacta.2010.10.093

W.L. Watkins, Y. Borensztein, Mechanism of hydrogen adsorption on gold nanoparticles and charge transfer probed by anisotropic surface plasmon resonance. Phys. Chem. Chem. Phys. 19, 27397–27405 (2017). https://doi.org/10.1039/c7cp04843b

V. Ganesh, V. Lakshminarayanan, Preparation of high surface area nickel electrodeposit using a liquid crystal template technique. Electrochim. Acta. 49, 3561–3572 (2004). https://doi.org/10.1016/j.electacta.2004.03.024

S. Rausch, H. Wendt, Morphology and Utilization of smooth hydrogen-evolving Raney nickel cathode coatings and porous sintered-nickel cathodes. J. Electrochem. Soc. 143, 2852–2862 (1996). https://doi.org/10.1149/1.1837118

A. Kellenberger, N. Vaszilcsin, W. Brandl, N. Duteanu, Kinetics of hydrogen evolution reaction on skeleton nickel and nickel-titanium electrodes obtained by thermal arc spraying technique. Int. J. Hydrogen Energy. 32, 3258–3265 (2007). https://doi.org/10.1016/j.ijhydene.2007.02.028

B. Pierozynski, L. Smoczynski, Kinetics of hydrogen evolution reaction at nickel-coated carbon fiber materials in 0.5 M H[sub 2]SO[sub 4] and 0.1 M NaOH solutions. J. Electrochem. Soc. 156, B1045 (2009). https://doi.org/10.1149/1.3158518.

A. Lasia, Mechanism and kinetics of the hydrogen evolution reaction. Int. J. Hydrogen Energy 44, 19484–19518 (2019)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem