- -

Synthesis of Gold Nanoparticles and Incorporation to a Porous Nickel Electrode to Improve its Catalytic Performance Towards the Hydrogen Evolution Reaction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of Gold Nanoparticles and Incorporation to a Porous Nickel Electrode to Improve its Catalytic Performance Towards the Hydrogen Evolution Reaction

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Medina-Orta, Ramiro es_ES
dc.contributor.author Labrada-Delgado, Gladis J. es_ES
dc.contributor.author Silva-Pereyra, Héctor G. es_ES
dc.contributor.author Ortega Navarro, Emma María es_ES
dc.contributor.author Pérez-Herranz, Valentín es_ES
dc.contributor.author Sánchez-Loredo, María Guadalupe es_ES
dc.date.accessioned 2023-05-17T18:01:00Z
dc.date.available 2023-05-17T18:01:00Z
dc.date.issued 2022-01 es_ES
dc.identifier.issn 1868-2529 es_ES
dc.identifier.uri http://hdl.handle.net/10251/193458
dc.description.abstract [EN] Gold nanoparticles (AuNPs) were successfully synthesized by a facile chemical reduction method in the presence of the stabilizer polyvinylpyrrolidone and characterized by UV-vis spectroscopy and transmission electron microscopy. The gold nanoparticles were then incorporated onto the surface of a porous Ni electrode by simple addition of the nanoparticles suspension, followed by heat treatment at 350 degrees C for 1 h under nitrogen atmosphere. The modified electrode was morphologically characterized by field emission scanning electron microscopy. Then, the effect of the modification with Au nanoparticles was studied in the hydrogen evolution reaction (HER) by pseudo-steady-state polarization curves and electrochemical impedance spectroscopy (EIS), at different temperatures and compared with a pure porous Ni electrode. The modified electrode showed a clear improvement in its catalytic performance mainly due to the intrinsic catalytic activity of the Au nanoparticles. From the Tafel representations and the EIS, it was estimated that the HER on the electrode modified with AuNPs takes place by the Volmer-Heyrovsky mechanism. es_ES
dc.description.sponsorship Ramiro Medina Orta is grateful to Consejo Nacional Ciencia y Tecnologia and Consejo Potosino de Ciencia y Tecnologia for the doctorate scholarship 472041. Also, he wishes to thank the Instituto de Metalurgia of Universidad Autonoma de San Luis Potosi for the opportunity of a research stay. We also thank Dr. Nubia Arteaga Larios and M.M.I.M. Martha Alejandra Lomeli Pacheco (Instituto de Metalurgia, Universidad Autonoma de San Luis Potosi) for their help with the UV-vis spectroscopy. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Electrocatalysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Porous Ni electrodes es_ES
dc.subject Au nanoparticles es_ES
dc.subject Chemical synthesis es_ES
dc.subject Hydrogen evolution reaction (HER) es_ES
dc.subject Catalysis es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Synthesis of Gold Nanoparticles and Incorporation to a Porous Nickel Electrode to Improve its Catalytic Performance Towards the Hydrogen Evolution Reaction es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s12678-021-00690-7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COPOCYT//472041/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Medina-Orta, R.; Labrada-Delgado, GJ.; Silva-Pereyra, HG.; Ortega Navarro, EM.; Pérez-Herranz, V.; Sánchez-Loredo, MG. (2022). Synthesis of Gold Nanoparticles and Incorporation to a Porous Nickel Electrode to Improve its Catalytic Performance Towards the Hydrogen Evolution Reaction. Electrocatalysis. 13(1):47-61. https://doi.org/10.1007/s12678-021-00690-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s12678-021-00690-7 es_ES
dc.description.upvformatpinicio 47 es_ES
dc.description.upvformatpfin 61 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\467593 es_ES
dc.contributor.funder Consejo Potosino de Ciencia y Tecnología es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references M.A. El-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34, 257–264 (2001) es_ES
dc.description.references E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583–592 (2006). https://doi.org/10.1039/b502142c es_ES
dc.description.references J. Belloni, Metal nanocolloids. Curr. Opin. Colloid Interface Sci. 1, 184–196 (1996). https://doi.org/10.1016/S1359-0294(96)80003-3 es_ES
dc.description.references R. Narayanan, M.A. El-Sayed, Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J. Phys. Chem. B. 109, 12663–12676 (2005) es_ES
dc.description.references F. Pagnanelli, P. Altimari, M. Bellagamba, G. Granata, E. Moscardini, P.G. Schiavi, L. Toro, Pulsed electrodeposition of cobalt nanoparticles on copper: influence of the operating parameters on size distribution and morphology. Electrochim. Acta. 155, 228–235 (2015). https://doi.org/10.1016/j.electacta.2014.12.112 es_ES
dc.description.references Q. Wang, J. Zheng, Electrodeposition of silver nanoparticles on a zinc oxide film: Improvement of amperometric sensing sensitivity and stability for hydrogen peroxide determination. Microchim. Acta. 169, 361–365 (2010). https://doi.org/10.1007/s00604-010-0356-7 es_ES
dc.description.references L. Rodríguez-Sánchez, M.C. Blanco, M.A. López-Quintela, Electrochemical synthesis of silver nanoparticles. J. Phys. Chem. B. 104, 9683–9688 (2000). https://doi.org/10.1021/jp001761r es_ES
dc.description.references P.M. Uberman, L.A. Pérez, G.I. Lacconi, S.E. Martín, PVP-stabilized palladium nanoparticles electrochemically obtained as effective catalysts in aqueous medium Suzuki-Miyaura reaction. J. Mol. Catal. A Chem. 363–364, 245–253 (2012). https://doi.org/10.1016/j.molcata.2012.06.016 es_ES
dc.description.references W. Pan, X. Zhang, H. Ma, J. Zhang, Electrochemical synthesis, voltammetric behavior, and electrocatalytic activity of Pd nanoparticles. J. Phys. Chem. C. 112, 2456–2461 (2008). https://doi.org/10.1021/jp710092z es_ES
dc.description.references B. Yin, H. Ma, S. Wang, S. Chen, Electrochemical synthesis of silver nanoparticles under protection of poly(n-vinylpyrrolidone). J. Phys. Chem. B. 107, 8898–8904 (2003). https://doi.org/10.1021/jp0349031 es_ES
dc.description.references K.B. Narayanan, N. Sakthivel, Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol. J. Hazard. Mater. 189, 519–525 (2011). https://doi.org/10.1016/j.jhazmat.2011.02.069 es_ES
dc.description.references H. Veisi, S. Azizi, P. Mohammadi, Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water. J. Clean. Prod. 170, 1536–1543 (2018). https://doi.org/10.1016/j.jclepro.2017.09.265 es_ES
dc.description.references Y. Wang, D. O’Connor, Z. Shen, I.M.C. Lo, D.C.W. Tsang, S. Pehkonen, S. Pu, D. Hou, Green synthesis of nanoparticles for the remediation of contaminated waters and soils: constituents, synthesizing methods, and influencing factors. J. Clean. Prod. 226, 540–549 (2019). https://doi.org/10.1016/j.jclepro.2019.04.128 es_ES
dc.description.references M. Teimouri, F. Khosravi-Nejad, F. Attar, A.A. Saboury, I. Kostova, G. Benelli, M. Falahati, Gold nanoparticles fabrication by plant extracts: synthesis, characterization, degradation of 4-nitrophenol from industrial wastewater, and insecticidal activity – a review. J. Clean. Prod. 184, 740–753 (2018). https://doi.org/10.1016/j.jclepro.2018.02.268 es_ES
dc.description.references I. Pedre, F. Battaglini, G.J. Labrada-Delgado, M.G. Sánchez-Loredo, G.A. González, Detection of thiourea from electrorefining baths using silver nanoparticles-based sensors, sensors actuators. B Chem. 211, 515–522 (2015). https://doi.org/10.1016/j.snb.2015.01.074 es_ES
dc.description.references N.R. Jana, Z.L. Wang, T. Pal, Redox catalytic properties of palladium nanoparticles: surfactant and electron donor-acceptor effects. Langmuir 16, 2457–2463 (2000). https://doi.org/10.1021/la990507r es_ES
dc.description.references R. Fenger, E. Fertitta, H. Kirmse, A.F. Thünemann, K. Rademann, Size dependent catalysis with CTAB-stabilized gold nanoparticles. Phys. Chem. Chem. Phys. 14, 9343–9349 (2012). https://doi.org/10.1039/c2cp40792b es_ES
dc.description.references C. Huff, T. Dushatinski, T.M. Abdel-Fattah, Gold nanoparticle/multi-walled carbon nanotube composite as novel catalyst for hydrogen evolution reactions. Int. J. Hydrogen Energy. 42, 18985–18990 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.226 es_ES
dc.description.references C. González-Buch, I. Herraiz-Cardona, E.M. Ortega, S. Mestre, V. Pérez-Herranz, Synthesis and characterization of Au-modified macroporous Ni electrocatalysts for alkaline water electrolysis. Int. J. Hydrogen Energy. 41, 764–772 (2016). https://doi.org/10.1016/j.ijhydene.2015.10.142 es_ES
dc.description.references M.A. Amin, S.A. Fadlallah, G.S. Alosaimi, In situ aqueous synthesis of silver nanoparticles supported on titanium as active electrocatalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy. 39, 19519–19540 (2014). https://doi.org/10.1016/j.ijhydene.2014.09.100 es_ES
dc.description.references M.A. Amin, S.A. Fadlallah, G.S. Alosaimi, F. Kandemirli, M. Saracoglu, S. Szunerits, R. Boukherroub, Cathodic activation of titanium-supported gold nanoparticles: an efficient and stable electrocatalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy. 41, 6326–6341 (2016). https://doi.org/10.1016/j.ijhydene.2016.02.107 es_ES
dc.description.references V. Pérez-Herranz, R. Medina, P. Taymans, C. González-Buch, E.M. Ortega, G. Sánchez-Loredo, G.J. Labrada-Delgado, Modification of porous nickel electrodes with silver nanoparticles for hydrogen production. J. Electroanal. Chem. 808, 420–426 (2018). https://doi.org/10.1016/j.jelechem.2017.06.022 es_ES
dc.description.references T.N. Veziroǧlu, S. Şahin, 21st century’s energy: hydrogen energy system. Energy Convers. Manag. 49, 1820–1831 (2008). https://doi.org/10.1016/j.enconman.2007.08.015 es_ES
dc.description.references K. Mazloomi, C. Gomes, Hydrogen as an energy carrier: prospects and challenges. Renew. Sustain. Energy Rev. 16, 3024–3033 (2012). https://doi.org/10.1016/j.rser.2012.02.028 es_ES
dc.description.references J.O.M. Bockris, T.N. Veziroǧlu, A solar-hydrogen economy for U.S.A., Int. J. Hydrogen Energy. 8, 323–340 (1983). https://doi.org/10.1016/0360-3199(83)90048-4. es_ES
dc.description.references F. Barbir, Transition to renewable energy systems with hydrogen as an energy carrier. Energy 34, 308–312 (2009). https://doi.org/10.1016/j.energy.2008.07.007 es_ES
dc.description.references A. Lasia, A. Rami, Kinetics of hydrogen evolution on nickel electrodes. J. Electroanal. Chem. 294, 123–141 (1990). https://doi.org/10.1016/0022-0728(90)87140-F es_ES
dc.description.references Y. Choquette, L. Brossard, A. Lasia, H. Ménard, Investigation Raney-nickel electrodes. Electrochem. Acta. 35, 1251–1256 (1990) es_ES
dc.description.references R. Solmaz, A. Döner, G. Kardaş, The stability of hydrogen evolution activity and corrosion behavior of NiCu coatings with long-term electrolysis in alkaline solution. Int. J. Hydrogen Energy. 34, 2089–2094 (2009). https://doi.org/10.1016/j.ijhydene.2009.01.007 es_ES
dc.description.references I. Arul-Raj, V.K. Venkatesan, Characterization of nickel-molybdenum and nickel-molybdenum-iron alloy coatings as cathodes for alkaline water electrolysers. Int. J. Hydrogen Energy. 13, 215–223 (1988). https://doi.org/10.1016/0360-3199(88)90088-2 es_ES
dc.description.references E. Navarro-Flores, Z. Chong, S. Omanovic, Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J. Mol. Catal. A Chem. 226, 179–197 (2005). https://doi.org/10.1016/j.molcata.2004.10.029 es_ES
dc.description.references I. Herraiz-Cardona, E.M. Ortega, L. Vázquez-Gómez, V. Pérez-Herranz, Electrochemical characterization of a NiCo/Zn cathode for hydrogen generation. Int. J. Hydrogen Energy. 36, 11578–11587 (2011). https://doi.org/10.1016/j.ijhydene.2011.06.067 es_ES
dc.description.references I. Herraiz-Cardona, E.M. Ortega, L. Vázquez-Gómez, V. Pérez-Herranz, Double-template fabrication of three-dimensional porous nickel electrodes for hydrogen evolution reaction. Int. J. Hydrogen Energy. 37, 2147–2156 (2012). https://doi.org/10.1016/j.ijhydene.2011.09.155 es_ES
dc.description.references C. González-Buch, I. Herraiz-Cardona, E.M. Ortega, J. García-Antón, V. Pérez-Herranz, Synthesis and characterization of macroporous Ni, Co and Ni-Co electrocatalytic deposits for hydrogen evolution reaction in alkaline media. Int. J. Hydrogen Energy. 38, 10157–10169 (2013). https://doi.org/10.1016/j.ijhydene.2013.06.016 es_ES
dc.description.references J. Kim, S. Byun, A.J. Smith, J. Yu, J. Huang, Enhanced electrocatalytic properties of transition-metal dichalcogenides sheets by spontaneous gold nanoparticle decoration. J. Phys. Chem. Lett. 4, 1227–1232 (2013). https://doi.org/10.1021/jz400507t es_ES
dc.description.references D. Li, J. Lao, C. Jiang, C. Luo, R. Qi, H. Lin, R. Huang, G.I.N. Waterhouse, H. Peng, Plasmonic Au nanoparticle-decorated Bi2Se3 nanoflowers with outstanding electrocatalytic performance for hydrogen evolution. Int. J. Hydrogen Energy. 44, 30876–30884 (2019). https://doi.org/10.1016/j.ijhydene.2019.10.041 es_ES
dc.description.references D. Balun-Kayan, D. Koçak, M. İlhan, Electrocatalytic hydrogen production on GCE/RGO/Au hybrid electrode. Int. J. Hydrogen Energy. 43, 10562–10568 (2018). https://doi.org/10.1016/j.ijhydene.2018.01.077 es_ES
dc.description.references Y. Pan, M. Wen, Noble metals enhanced catalytic activity of anatase TiO2 for hydrogen evolution reaction. Int. J. Hydrogen Energy. 43, 22055–22063 (2018). https://doi.org/10.1016/j.ijhydene.2018.10.093 es_ES
dc.description.references C. González-Buch, I. Herraiz-Cardona, E.M. Ortega, J. García-Antón, V. Pérez-Herranz, Study of the catalytic activity of 3D macroporous Ni and NiMo cathodes for hydrogen production by alkaline water electrolysis. J. Appl. Electrochem. 46, 791–803 (2016). https://doi.org/10.1007/s10800-016-0970-0 es_ES
dc.description.references R.S. Sai Siddhardha, V. Lakshminarayanan, S.S. Ramamurthy, Spot-free catalysis using gold carbon nanotube & gold graphene composites for hydrogen evolution reaction, J. Power Sources. 288, 441–450 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.141 es_ES
dc.description.references G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Der Physic. 330, 377–445 (1908). https://doi.org/10.1002/andp.19083300302 es_ES
dc.description.references K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalt. Trans. 44, 17883–17905 (2015). https://doi.org/10.1039/c5dt02964c es_ES
dc.description.references R. Si, Y.W. Zhang, L.P. You, C.H. Yan, Self-organized monolayer of nanosized ceria colloids stabilized by poly(vinylpyrrolidone). J. Phys. Chem. B. 110, 5994–6000 (2006). https://doi.org/10.1021/jp057501x es_ES
dc.description.references Y. Gao, P. Jiang, D.F. Liu, H.J. Yuan, X.Q. Yan, Z.P. Zhou, J.X. Wang, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, C.Y. Wang, S.S. Xie, J.M. Zhang, D.Y. Shen, Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires. J. Phys. Chem. B. 108, 12877–12881 (2004). https://doi.org/10.1021/jp037116c es_ES
dc.description.references X.L. Tang, P. Jiang, G.L. Ge, M. Tsuji, S.S. Xie, Y.J. Guo, Poly(N-vinyl-2-pyrrolidone) (PVP)-capped dendritic gold nanoparticles by a one-step hydrothermal route and their high SERS effect. Langmuir 24, 1763–1768 (2008). https://doi.org/10.1021/la703495s es_ES
dc.description.references H.H. Huang, X.P. Ni, G.L. Loy, C.H. Chew, K.L. Tan, F.C. Loh, J.F. Deng, G.Q. Xu, Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone). Langmuir 12, 909–912 (1996). https://doi.org/10.1021/la950435d es_ES
dc.description.references F. Bonet, K. Tekaia-Elhsissen, K. Vijaya-Sarathy, Study of interaction of ethylene glycol/PVP phase on noble metal powders prepared by polyol process. Bull. Mater. Sci. 23, 165–168 (2000). https://doi.org/10.1007/BF02719903 es_ES
dc.description.references G. Carotenuto, G.P. Pepe, L. Nicolais, Preparation and characterization of nano-sized Ag / PVP. Eur. Phys. J. B. 16, 11–17 (2000) es_ES
dc.description.references G. Carotenuto, S. DeNicola, G.P. Pepe, L. Nicolais, A qualitative model for the growth mechanism of silver clusters in polymer solution. Eur. Phys. J. B. 24, 437–441 (2001). https://doi.org/10.1007/s10051-001-8696-z es_ES
dc.description.references Z. Chen, J.W. Chang, C. Balasanthiran, S.T. Milner, R.M. Rioux, Anisotropic growth of silver nanoparticles is kinetically controlled by polyvinylpyrrolidone binding. J. Am. Chem. Soc. 141, 4328–4337 (2019). https://doi.org/10.1021/jacs.8b11295 es_ES
dc.description.references C. Chen, D.Y.W. Ng, T. Weil, Polymer-grafted gold nanoflowers with temperature-controlled catalytic features by: in situ particle growth and polymerization. Mater. Chem. Front. 3, 1449–1453 (2019). https://doi.org/10.1039/c9qm00252a es_ES
dc.description.references M.F. Kibria, M.S. Mridha, A.H. Khan, Electrochemical studies of a nickel electrode for the hydrogen evolution reaction. Int. J. Hydrogen Energy. 20, 435–440 (1995). https://doi.org/10.1016/0360-3199(94)00073-9 es_ES
dc.description.references A. Rami, A. Lasia, Kinetics of hydrogen evolution on Ni-AI alloy electrodes. J. Appl. Electrochem. 22, 376 (1992). https://doi.org/10.1007/BF01092692 es_ES
dc.description.references L.A. Khanova, L.I. Krishtalik, Kinetics of the hydrogen evolution reaction on gold electrode. A new case of the barrierless discharge, J. Electroanal. Chem. 660, 224–229 (2011). https://doi.org/10.1016/j.jelechem.2011.01.016 es_ES
dc.description.references T. Ohmori, M. Enyo, Hydrogen evolution reaction on gold electrode in alkaline solutions. Electrochim. Acta. 37, 2021–2028 (1992). https://doi.org/10.1016/0013-4686(92)87118-J es_ES
dc.description.references A. Kahyarian, B. Brown, S. Nesic, Mechanism of the hydrogen evolution reaction in mildly acidic environments on gold. J. Electrochem. Soc. 164, H365–H374 (2017). https://doi.org/10.1149/2.1061706jes es_ES
dc.description.references A. Lasia, Hydrogen evolution reaction, in: Handb. Fuel Cells, John Wiley & Sons, Ltd, Chichester, UK, (2010). https://doi.org/10.1002/9780470974001.f204033 es_ES
dc.description.references A.N. Correia, S.A.S. Machado, Hydrogen evolution on electrodeposited Ni and Hg ultramicroelectrodes. Electrochim. Acta. 43, 367–373 (1998). https://doi.org/10.1016/S0013-4686(97)00050-9 es_ES
dc.description.references O. Savadogo, E. Ndzebet, Influence of SiW12O404- on the electrocatalytic behaviour of Pt-Co alloy supported on carbon for water electrolysis in 3 M KOH aqueous solution. Int. J. Hydrogen Energy. 26, 213–218 (2001). https://doi.org/10.1016/S0360-3199(00)00059-8 es_ES
dc.description.references S.A.S. Machado, L.A. Avaca, The hydrogen evolution reaction on nickel surfaces stabilized by H-absorption. Electrochim. Acta. 39, 1385–1391 (1994). https://doi.org/10.1016/0013-4686(94)E0003-I es_ES
dc.description.references B.E. Conway, L. Bai, H2 evolution kinetics at high activity Ni-Mo-Cd electrocoated cathodes and its relation to potential dependence of sorption of H. Int. J. Hydrogen Energy. 11, 533–540 (1986). https://doi.org/10.1016/0360-3199(86)90020-0 es_ES
dc.description.references L. Birry, A. Lasia, Studies of the hydrogen evolution reaction on Raney nickel-molybdenum electrodes. J. Appl. Electrochem. 34, 735–749 (2004) es_ES
dc.description.references C. Hitz, A. Lasia, Experimental study and modeling of impedance of porous electrodes. J. Electroanal. Chem. 500, 213–222 (2001) es_ES
dc.description.references R. de Levie, in P. Delahay (Ed.), Advances in electrochemistry and electrochemical engineering. Interscience, New York. 6, 329 (1967). es_ES
dc.description.references L. Chen, A. Lasia, Study of the kinetics of hydrogen evolution reaction on nickel-zinc powder electrodes. J. Electrochem. Soc. 139, 3214–3219 (1992). https://doi.org/10.1149/1.2069055 es_ES
dc.description.references R.D. Armstrong, M. Henderson, Impedance plane display of a reaction with an adsorbed intermediate, Electroanal. Chem. Interfacial. Electrochem. 39, 81–90 (1972) es_ES
dc.description.references G.J. Brug, a. L.G. van den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. 176, 275–295 (1984). https://doi.org/10.1016/S0022-0728(84)80324-1 es_ES
dc.description.references I. Herraiz-Cardona, E.M. Ortega, J. García-Antón, V. Pérez-Herranz, Assessment of the roughness factor effect and the intrinsic catalytic activity for hydrogen evolution reaction on Ni-based electrodeposits. Int. J. Hydrogen Energy. 36, 9428–9438 (2011). https://doi.org/10.1016/j.ijhydene.2011.05.047 es_ES
dc.description.references I. Herraiz-Cardona, E. Ortega, V. Pérez-Herranz, Impedance study of hydrogen evolution on Ni/Zn and Ni-Co/Zn stainless steel based electrodeposits. Electrochim. Acta. 56, 1308–1315 (2011). https://doi.org/10.1016/j.electacta.2010.10.093 es_ES
dc.description.references W.L. Watkins, Y. Borensztein, Mechanism of hydrogen adsorption on gold nanoparticles and charge transfer probed by anisotropic surface plasmon resonance. Phys. Chem. Chem. Phys. 19, 27397–27405 (2017). https://doi.org/10.1039/c7cp04843b es_ES
dc.description.references V. Ganesh, V. Lakshminarayanan, Preparation of high surface area nickel electrodeposit using a liquid crystal template technique. Electrochim. Acta. 49, 3561–3572 (2004). https://doi.org/10.1016/j.electacta.2004.03.024 es_ES
dc.description.references S. Rausch, H. Wendt, Morphology and Utilization of smooth hydrogen-evolving Raney nickel cathode coatings and porous sintered-nickel cathodes. J. Electrochem. Soc. 143, 2852–2862 (1996). https://doi.org/10.1149/1.1837118 es_ES
dc.description.references A. Kellenberger, N. Vaszilcsin, W. Brandl, N. Duteanu, Kinetics of hydrogen evolution reaction on skeleton nickel and nickel-titanium electrodes obtained by thermal arc spraying technique. Int. J. Hydrogen Energy. 32, 3258–3265 (2007). https://doi.org/10.1016/j.ijhydene.2007.02.028 es_ES
dc.description.references B. Pierozynski, L. Smoczynski, Kinetics of hydrogen evolution reaction at nickel-coated carbon fiber materials in 0.5 M H[sub 2]SO[sub 4] and 0.1 M NaOH solutions. J. Electrochem. Soc. 156, B1045 (2009). https://doi.org/10.1149/1.3158518. es_ES
dc.description.references A. Lasia, Mechanism and kinetics of the hydrogen evolution reaction. Int. J. Hydrogen Energy 44, 19484–19518 (2019) es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem