- -

Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Solano-Meza, Johanna es_ES
dc.contributor.author Orjuela Yepes, David es_ES
dc.contributor.author Rodrigo-Ilarri, Javier es_ES
dc.contributor.author Rodrigo-Clavero, María-Elena es_ES
dc.date.accessioned 2023-05-23T18:01:55Z
dc.date.available 2023-05-23T18:01:55Z
dc.date.issued 2023-02-27 es_ES
dc.identifier.uri http://hdl.handle.net/10251/193540
dc.description.abstract [EN] The development of methodologies to support decision-making in municipal solid waste (MSW) management processes is of great interest for municipal administrations. Artificial intelligence (AI) techniques provide multiple tools for designing algorithms to objectively analyze data while creating highly precise models. Support vector machines and neuronal networks are formed by AI applications offering optimization solutions at different managing stages. In this paper, an implementation and comparison of the results obtained by two AI methods on a solid waste management problem is shown. Support vector machine (SVM) and long short-term memory (LSTM) network techniques have been used. The implementation of LSTM took into account different configurations, temporal filtering and annual calculations of solid waste collection periods. Results show that the SVM method properly fits selected data and yields consistent regression curves, even with very limited training data, leading to more accurate results than those obtained by the LSTM method. es_ES
dc.description.sponsorship Thanks are due to the Final Disposal Area of the Special Administrative Unit of Public Services of Bogota and the National Planning Department (DNP) for their support in providing data to perform this research. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof International Journal of Environmental research and Public Health (Online) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Artificial neural networks es_ES
dc.subject Municipal solid waste es_ES
dc.subject Support vector machines es_ES
dc.subject Solid waste management es_ES
dc.subject Aaste disposal es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijerph20054256 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.description.bibliographicCitation Solano-Meza, J.; Orjuela Yepes, D.; Rodrigo-Ilarri, J.; Rodrigo-Clavero, M. (2023). Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities. International Journal of Environmental research and Public Health (Online). 20(5):1-21. https://doi.org/10.3390/ijerph20054256 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https:// doi.org/10.3390/ijerph20054256 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 1660-4601 es_ES
dc.identifier.pmid 36901265 es_ES
dc.identifier.pmcid PMC10002305 es_ES
dc.relation.pasarela S\484076 es_ES
dc.contributor.funder Universitat Politècnica de València
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem