Mostrar el registro sencillo del ítem
dc.contributor.author | Solano-Meza, Johanna | es_ES |
dc.contributor.author | Orjuela Yepes, David | es_ES |
dc.contributor.author | Rodrigo-Ilarri, Javier | es_ES |
dc.contributor.author | Rodrigo-Clavero, María-Elena | es_ES |
dc.date.accessioned | 2023-05-23T18:01:55Z | |
dc.date.available | 2023-05-23T18:01:55Z | |
dc.date.issued | 2023-02-27 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/193540 | |
dc.description.abstract | [EN] The development of methodologies to support decision-making in municipal solid waste (MSW) management processes is of great interest for municipal administrations. Artificial intelligence (AI) techniques provide multiple tools for designing algorithms to objectively analyze data while creating highly precise models. Support vector machines and neuronal networks are formed by AI applications offering optimization solutions at different managing stages. In this paper, an implementation and comparison of the results obtained by two AI methods on a solid waste management problem is shown. Support vector machine (SVM) and long short-term memory (LSTM) network techniques have been used. The implementation of LSTM took into account different configurations, temporal filtering and annual calculations of solid waste collection periods. Results show that the SVM method properly fits selected data and yields consistent regression curves, even with very limited training data, leading to more accurate results than those obtained by the LSTM method. | es_ES |
dc.description.sponsorship | Thanks are due to the Final Disposal Area of the Special Administrative Unit of Public Services of Bogota and the National Planning Department (DNP) for their support in providing data to perform this research. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | International Journal of Environmental research and Public Health (Online) | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Artificial neural networks | es_ES |
dc.subject | Municipal solid waste | es_ES |
dc.subject | Support vector machines | es_ES |
dc.subject | Solid waste management | es_ES |
dc.subject | Aaste disposal | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ijerph20054256 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports | es_ES |
dc.description.bibliographicCitation | Solano-Meza, J.; Orjuela Yepes, D.; Rodrigo-Ilarri, J.; Rodrigo-Clavero, M. (2023). Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities. International Journal of Environmental research and Public Health (Online). 20(5):1-21. https://doi.org/10.3390/ijerph20054256 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https:// doi.org/10.3390/ijerph20054256 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 21 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 1660-4601 | es_ES |
dc.identifier.pmid | 36901265 | es_ES |
dc.identifier.pmcid | PMC10002305 | es_ES |
dc.relation.pasarela | S\484076 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |