- -

Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities

Mostrar el registro completo del ítem

Solano-Meza, J.; Orjuela Yepes, D.; Rodrigo-Ilarri, J.; Rodrigo-Clavero, M. (2023). Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities. International Journal of Environmental research and Public Health (Online). 20(5):1-21. https://doi.org/10.3390/ijerph20054256

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/193540

Ficheros en el ítem

Metadatos del ítem

Título: Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities
Autor: Solano-Meza, Johanna Orjuela Yepes, David Rodrigo-Ilarri, Javier Rodrigo-Clavero, María-Elena
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports
Fecha difusión:
Resumen:
[EN] The development of methodologies to support decision-making in municipal solid waste (MSW) management processes is of great interest for municipal administrations. Artificial intelligence (AI) techniques provide ...[+]
Palabras clave: Artificial neural networks , Municipal solid waste , Support vector machines , Solid waste management , Aaste disposal
Derechos de uso: Reconocimiento (by)
Fuente:
International Journal of Environmental research and Public Health (Online). (eissn: 1660-4601 )
DOI: 10.3390/ijerph20054256
Editorial:
MDPI AG
Versión del editor: https:// doi.org/10.3390/ijerph20054256
Agradecimientos:
Thanks are due to the Final Disposal Area of the Special Administrative Unit of Public Services of Bogota and the National Planning Department (DNP) for their support in providing data to perform this research.
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem