- -

Non-point contaminant source identification in an aquifer using the ensemble smoother with multiple data assimilation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non-point contaminant source identification in an aquifer using the ensemble smoother with multiple data assimilation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Xu, Teng es_ES
dc.contributor.author Zhang, Wenjun es_ES
dc.contributor.author Gómez-Hernández, J. Jaime es_ES
dc.contributor.author Xie, Yifan es_ES
dc.contributor.author Yang, Jie es_ES
dc.contributor.author Chen, Zi es_ES
dc.contributor.author Lu, Chunhui es_ES
dc.date.accessioned 2023-05-26T18:01:46Z
dc.date.available 2023-05-26T18:01:46Z
dc.date.issued 2022-03 es_ES
dc.identifier.issn 0022-1694 es_ES
dc.identifier.uri http://hdl.handle.net/10251/193630
dc.description.abstract [EN] Proper identification of groundwater contaminant sources is vital to assess groundwater contamination. However, the majority of previous studies focuses on point source identification; only a few works have been conducted for non-point source parameter identification. Here, we employ the ensemble smoother with multiple data assimilation (ES-MDA) to simultaneously identify the spatial architecture of non-point contaminant sources and the related release information. Three different shapes of non-point contaminant sources are considered, an ellipse, a circle, and an irregular shape. We test the applicability of the ES-MDA for the simultaneous identification using three scenarios in a synthetic confined aquifer by assimilating concentration observations from alltime steps multiple times. The results demonstrate that the ES-MDA is capable to accurately identify both regular and irregular non-point contaminant source information; the accuracy of the identification can be improved by increasing the number of iterations. es_ES
dc.description.sponsorship Financial support to carry out this work was received from the financial support from the Fundamental Research Funds for the Central Universities (B200201015) and Jiangsu Specially-Appointed Professor Program from Jiangsu Provincial Department of Education (B19052). J. Jaime G ' omez-Hern ' andez acknowledges grant PID2019-109131RB-I00 funded by MCIN/AEI/10.13039/501100011033. C. Lu acknowledges the National Natural Science Foundation of China (51879088), Fundamental Research Funds for the Central Universities (B200204002), and the Natural Science Foundation of Jiangsu Province (BK 20190023). Y. Xie acknowledges the Fundamental Research Funds for the Central Universities (B210202018). J. Yang acknowledges the National Natural Science Foundation of China (52009032) and the Fundamental Research Funds for the Central Universities (B210202019). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Hydrology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Non-point contaminant source identification es_ES
dc.subject Data assimilation es_ES
dc.subject Ensemble smoother with multiple data assimilation es_ES
dc.subject Groundwater contamination es_ES
dc.subject Concentration es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Non-point contaminant source identification in an aquifer using the ensemble smoother with multiple data assimilation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jhydrol.2021.127405 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2019-109131RB-I00//APRENDIZAJE AUTOMATICO PARA HIDROGEOLOGOS FORENSES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//51879088/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//52009032/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//B200201015/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//B200204002/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//B210202019/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//B210202018/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Natural Science Foundation of Jiangsu Province//BK 20190023/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JPDE//B19052/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.description.bibliographicCitation Xu, T.; Zhang, W.; Gómez-Hernández, JJ.; Xie, Y.; Yang, J.; Chen, Z.; Lu, C. (2022). Non-point contaminant source identification in an aquifer using the ensemble smoother with multiple data assimilation. Journal of Hydrology. 606:1-17. https://doi.org/10.1016/j.jhydrol.2021.127405 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jhydrol.2021.127405 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 606 es_ES
dc.relation.pasarela S\453078 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Jiangsu Provincial Department of Education es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Natural Science Foundation of Jiangsu Province es_ES
dc.contributor.funder Fundamental Research Funds for the Central Universities es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem