Mostrar el registro sencillo del ítem
dc.contributor.author | Xu, Teng | es_ES |
dc.contributor.author | Zhang, Wenjun | es_ES |
dc.contributor.author | Gómez-Hernández, J. Jaime | es_ES |
dc.contributor.author | Xie, Yifan | es_ES |
dc.contributor.author | Yang, Jie | es_ES |
dc.contributor.author | Chen, Zi | es_ES |
dc.contributor.author | Lu, Chunhui | es_ES |
dc.date.accessioned | 2023-05-26T18:01:46Z | |
dc.date.available | 2023-05-26T18:01:46Z | |
dc.date.issued | 2022-03 | es_ES |
dc.identifier.issn | 0022-1694 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/193630 | |
dc.description.abstract | [EN] Proper identification of groundwater contaminant sources is vital to assess groundwater contamination. However, the majority of previous studies focuses on point source identification; only a few works have been conducted for non-point source parameter identification. Here, we employ the ensemble smoother with multiple data assimilation (ES-MDA) to simultaneously identify the spatial architecture of non-point contaminant sources and the related release information. Three different shapes of non-point contaminant sources are considered, an ellipse, a circle, and an irregular shape. We test the applicability of the ES-MDA for the simultaneous identification using three scenarios in a synthetic confined aquifer by assimilating concentration observations from alltime steps multiple times. The results demonstrate that the ES-MDA is capable to accurately identify both regular and irregular non-point contaminant source information; the accuracy of the identification can be improved by increasing the number of iterations. | es_ES |
dc.description.sponsorship | Financial support to carry out this work was received from the financial support from the Fundamental Research Funds for the Central Universities (B200201015) and Jiangsu Specially-Appointed Professor Program from Jiangsu Provincial Department of Education (B19052). J. Jaime G ' omez-Hern ' andez acknowledges grant PID2019-109131RB-I00 funded by MCIN/AEI/10.13039/501100011033. C. Lu acknowledges the National Natural Science Foundation of China (51879088), Fundamental Research Funds for the Central Universities (B200204002), and the Natural Science Foundation of Jiangsu Province (BK 20190023). Y. Xie acknowledges the Fundamental Research Funds for the Central Universities (B210202018). J. Yang acknowledges the National Natural Science Foundation of China (52009032) and the Fundamental Research Funds for the Central Universities (B210202019). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Hydrology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Non-point contaminant source identification | es_ES |
dc.subject | Data assimilation | es_ES |
dc.subject | Ensemble smoother with multiple data assimilation | es_ES |
dc.subject | Groundwater contamination | es_ES |
dc.subject | Concentration | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Non-point contaminant source identification in an aquifer using the ensemble smoother with multiple data assimilation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jhydrol.2021.127405 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PID2019-109131RB-I00//APRENDIZAJE AUTOMATICO PARA HIDROGEOLOGOS FORENSES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//51879088/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//52009032/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//B200201015/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//B200204002/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//B210202019/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//B210202018/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Natural Science Foundation of Jiangsu Province//BK 20190023/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/JPDE//B19052/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports | es_ES |
dc.description.bibliographicCitation | Xu, T.; Zhang, W.; Gómez-Hernández, JJ.; Xie, Y.; Yang, J.; Chen, Z.; Lu, C. (2022). Non-point contaminant source identification in an aquifer using the ensemble smoother with multiple data assimilation. Journal of Hydrology. 606:1-17. https://doi.org/10.1016/j.jhydrol.2021.127405 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jhydrol.2021.127405 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 606 | es_ES |
dc.relation.pasarela | S\453078 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Jiangsu Provincial Department of Education | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.contributor.funder | Natural Science Foundation of Jiangsu Province | es_ES |
dc.contributor.funder | Fundamental Research Funds for the Central Universities | es_ES |