- -

Non-point contaminant source identification in an aquifer using the ensemble smoother with multiple data assimilation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non-point contaminant source identification in an aquifer using the ensemble smoother with multiple data assimilation

Mostrar el registro completo del ítem

Xu, T.; Zhang, W.; Gómez-Hernández, JJ.; Xie, Y.; Yang, J.; Chen, Z.; Lu, C. (2022). Non-point contaminant source identification in an aquifer using the ensemble smoother with multiple data assimilation. Journal of Hydrology. 606:1-17. https://doi.org/10.1016/j.jhydrol.2021.127405

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/193630

Ficheros en el ítem

Metadatos del ítem

Título: Non-point contaminant source identification in an aquifer using the ensemble smoother with multiple data assimilation
Autor: Xu, Teng Zhang, Wenjun Gómez-Hernández, J. Jaime Xie, Yifan Yang, Jie Chen, Zi Lu, Chunhui
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports
Fecha difusión:
Resumen:
[EN] Proper identification of groundwater contaminant sources is vital to assess groundwater contamination. However, the majority of previous studies focuses on point source identification; only a few works have been ...[+]
Palabras clave: Non-point contaminant source identification , Data assimilation , Ensemble smoother with multiple data assimilation , Groundwater contamination , Concentration
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Hydrology. (issn: 0022-1694 )
DOI: 10.1016/j.jhydrol.2021.127405
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jhydrol.2021.127405
Código del Proyecto:
info:eu-repo/grantAgreement/AEI//PID2019-109131RB-I00//APRENDIZAJE AUTOMATICO PARA HIDROGEOLOGOS FORENSES/
...[+]
info:eu-repo/grantAgreement/AEI//PID2019-109131RB-I00//APRENDIZAJE AUTOMATICO PARA HIDROGEOLOGOS FORENSES/
info:eu-repo/grantAgreement/NSFC//51879088/
info:eu-repo/grantAgreement/NSFC//52009032/
info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//B200201015/
info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//B200204002/
info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//B210202019/
info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//B210202018/
info:eu-repo/grantAgreement/Natural Science Foundation of Jiangsu Province//BK 20190023/
info:eu-repo/grantAgreement/JPDE//B19052/
[-]
Agradecimientos:
Financial support to carry out this work was received from the financial support from the Fundamental Research Funds for the Central Universities (B200201015) and Jiangsu Specially-Appointed Professor Program from Jiangsu ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem