Mostrar el registro completo del ítem
Romero-Cuellar, J.; Gastulo-Tapia, CJ.; Hernández-López, MR.; Prieto Sierra, C.; Francés, F. (2022). Towards an Extension of the Model Conditional Processor: Predictive Uncertainty Quantification of Monthly Streamflow via Gaussian Mixture Models and Clusters. Water. 14(8):1-24. https://doi.org/10.3390/w14081261
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194039
Título: | Towards an Extension of the Model Conditional Processor: Predictive Uncertainty Quantification of Monthly Streamflow via Gaussian Mixture Models and Clusters | |
Autor: | Romero-Cuellar, Jonathan Gastulo-Tapia, Cristhian J. Prieto Sierra, Cristina | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] This research develops an extension of the Model Conditional Processor (MCP), which merges clusters with Gaussian mixture models to offer an alternative solution to manage heteroscedastic errors. The new method is ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.3390/w14081261 | |
Coste APC: |
|
|
Código del Proyecto: |
|
|
Agradecimientos: |
We are grateful to Qingyun Duan for information of the MOPEX experiment. We also are grateful to the editor and two anonymous reviewers for their thoughtful comments on this manuscript. This research was funded by the ...[+]
|
|
Tipo: |
|