Mostrar el registro completo del ítem
Schmidt, A.; Silva-Rodríguez, J.; Molina, R.; Naranjo Ornedo, V. (2022). Efficient Cancer Classification by Coupling Semi Supervised and Multiple Instance Learning. IEEE Access. 10:9763-9773. https://doi.org/10.1109/ACCESS.2022.3143345
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194334
Título: | Efficient Cancer Classification by Coupling Semi Supervised and Multiple Instance Learning | |
Autor: | Schmidt, Arne Molina, Rafael | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] The annotation of large datasets is often the bottleneck in the successful application of artificial intelligence in computational pathology. For this reason recently Multiple Instance Learning (MIL) and Semi Supervised ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1109/ACCESS.2022.3143345 | |
Código del Proyecto: |
|
|
Agradecimientos: |
This work was supported in part by the European Union's Horizon 2020 Research and Innovation Program through the Marie Skodowska Curie (Cloud Artificial Intelligence For pathologY (CLARIFY) Project) under Grant 860627, and ...[+]
|
|
Tipo: |
|