- -

Efficient Cancer Classification by Coupling Semi Supervised and Multiple Instance Learning

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Efficient Cancer Classification by Coupling Semi Supervised and Multiple Instance Learning

Show full item record

Schmidt, A.; Silva-Rodríguez, J.; Molina, R.; Naranjo Ornedo, V. (2022). Efficient Cancer Classification by Coupling Semi Supervised and Multiple Instance Learning. IEEE Access. 10:9763-9773. https://doi.org/10.1109/ACCESS.2022.3143345

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194334

Files in this item

Item Metadata

Title: Efficient Cancer Classification by Coupling Semi Supervised and Multiple Instance Learning
Author: Schmidt, Arne Silva-Rodríguez, Julio Molina, Rafael Naranjo Ornedo, Valeriana
UPV Unit: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Issued date:
Abstract:
[EN] The annotation of large datasets is often the bottleneck in the successful application of artificial intelligence in computational pathology. For this reason recently Multiple Instance Learning (MIL) and Semi Supervised ...[+]
Subjects: Cancer classification , Histopathology , Multiple instance learning , Semi-supervised learning , Whole slide images
Copyrigths: Reconocimiento (by)
Source:
IEEE Access. (eissn: 2169-3536 )
DOI: 10.1109/ACCESS.2022.3143345
Publisher:
Institute of Electrical and Electronics Engineers
Publisher version: https://doi.org/10.1109/ACCESS.2022.3143345
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105142RB-C21/ES/CARACTERIZACION DE NEOPLASIAS DE CELULAS FUSIFORMES EN IMAGENES HISTOLOGICAS/
info:eu-repo/grantAgreement/EC/H2020/860627/EU
Thanks:
This work was supported in part by the European Union's Horizon 2020 Research and Innovation Program through the Marie Skodowska Curie (Cloud Artificial Intelligence For pathologY (CLARIFY) Project) under Grant 860627, and ...[+]
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record