- -

Efficient Cancer Classification by Coupling Semi Supervised and Multiple Instance Learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient Cancer Classification by Coupling Semi Supervised and Multiple Instance Learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Schmidt, Arne es_ES
dc.contributor.author Silva-Rodríguez, Julio es_ES
dc.contributor.author Molina, Rafael es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2023-06-16T18:02:37Z
dc.date.available 2023-06-16T18:02:37Z
dc.date.issued 2022 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194334
dc.description.abstract [EN] The annotation of large datasets is often the bottleneck in the successful application of artificial intelligence in computational pathology. For this reason recently Multiple Instance Learning (MIL) and Semi Supervised Learning (SSL) approaches are gaining popularity because they require fewer annotations. In this work we couple SSL and MIL to train a deep learning classifier that combines the advantages of both methods and overcomes their limitations. Our method is able to learn from the global WSI diagnosis and a combination of labeled and unlabeled patches. Furthermore, we propose and evaluate an efficient labeling paradigm that guarantees a strong classification performance when combined with our learning framework. We compare our method to SSL and MIL baselines, the state-of-the-art and completely supervised training. With only a small percentage of patch labels our proposed model achieves a competitive performance on SICAPv2 (Cohen's kappa of 0.801 with 450 patch labels), PANDA (Cohen's kappa of 0.794 with 22,023 patch labels) and Camelyon16 (ROC AUC of 0.913 with 433 patch labels). Our code is publicly available at https://github.com/arneschmidt/ssl_and_mil_cancer_classification. es_ES
dc.description.sponsorship This work was supported in part by the European Union's Horizon 2020 Research and Innovation Program through the Marie Skodowska Curie (Cloud Artificial Intelligence For pathologY (CLARIFY) Project) under Grant 860627, and in part by the Spanish Ministry of Science and Innovation under Project PID2019-105142RB-C22. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Access es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cancer classification es_ES
dc.subject Histopathology es_ES
dc.subject Multiple instance learning es_ES
dc.subject Semi-supervised learning es_ES
dc.subject Whole slide images es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Efficient Cancer Classification by Coupling Semi Supervised and Multiple Instance Learning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/ACCESS.2022.3143345 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105142RB-C21/ES/CARACTERIZACION DE NEOPLASIAS DE CELULAS FUSIFORMES EN IMAGENES HISTOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/860627/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Schmidt, A.; Silva-Rodríguez, J.; Molina, R.; Naranjo Ornedo, V. (2022). Efficient Cancer Classification by Coupling Semi Supervised and Multiple Instance Learning. IEEE Access. 10:9763-9773. https://doi.org/10.1109/ACCESS.2022.3143345 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/ACCESS.2022.3143345 es_ES
dc.description.upvformatpinicio 9763 es_ES
dc.description.upvformatpfin 9773 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.identifier.eissn 2169-3536 es_ES
dc.relation.pasarela S\463761 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem