- -

Quasi-Metric Properties of the Dual Cone of an Asymmetric Normed Space

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Quasi-Metric Properties of the Dual Cone of an Asymmetric Normed Space

Mostrar el registro completo del ítem

Alegre Gil, MC. (2022). Quasi-Metric Properties of the Dual Cone of an Asymmetric Normed Space. Results in Mathematics. 77(4):1-10. https://doi.org/10.1007/s00025-022-01720-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194433

Ficheros en el ítem

Metadatos del ítem

Título: Quasi-Metric Properties of the Dual Cone of an Asymmetric Normed Space
Autor: Alegre Gil, Maria Carmen
Entidad UPV: Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Fecha difusión:
Resumen:
[EN] We obtain some quasi-metric properties of the dual cone of an asymmetric normed space. Thus, we prove that it is balanced, and hence its topology is completely regular. We also prove that it is complete in the sense ...[+]
Palabras clave: Quasi-metric , Asymmetric norm , Asymmetric normed linear space , Cone , Semicontinuous linear map
Derechos de uso: Reserva de todos los derechos
Fuente:
Results in Mathematics. (issn: 1422-6383 )
DOI: 10.1007/s00025-022-01720-6
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00025-022-01720-6
Tipo: Artículo

References

Alegre, C.: Continuous operator on asymmetric normed spaces. Acta Math. Hungar. 122, 357–372 (2009)

Alegre, C.: The weak topology in finite dimensional asymmetric normed spaces. Topology Appl. 264, 455–461 (2019)

Alegre, C., Ferrer, J., Gregori, V.: On the Hahn-Banach theorem in certain linear quasi-uniform structures. Acta Math. Hungar. 82, 315–320 (1999) [+]
Alegre, C.: Continuous operator on asymmetric normed spaces. Acta Math. Hungar. 122, 357–372 (2009)

Alegre, C.: The weak topology in finite dimensional asymmetric normed spaces. Topology Appl. 264, 455–461 (2019)

Alegre, C., Ferrer, J., Gregori, V.: On the Hahn-Banach theorem in certain linear quasi-uniform structures. Acta Math. Hungar. 82, 315–320 (1999)

Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. Springer (2006)

Bachir, M.: Asymmetric normed Baire space. Results Math. 76(176), 1–9 (2021)

Bachir, M., Flores, G.: Index of symmetry and topological classification of asymmetric normed spaces. Rocky Mountain J. Math. 50(6), 1951–1964 (2020)

Blasco, X., Reynoso-Meza, G., Sánchez-Pérez, E.A., Sánchez-Pérez, J.V.: Computing Optimal Distances to Pareto Sets of Multi-Objective Optimization Problems in Asymmetric Normed Lattices. Acta Appl. Math. 159, 75–93 (2019)

Cobzas, S.: Functional Analysis in Asymmetric Normed Spaces. Birkhauser, Basel (2013)

Cobzas, S., Mustata, C.: Extension of bounded linear functionals and best approximation in spaces with asymmetric norm. Rev. Anal. Numer. Theor. Approx. 33(1), 39–50 (2004)

Doitchinov, D.: On completeness in quasi-metric spaces. Topology Appl. 30, 127–148 (1988)

Ferrer, J., Gregori, V., Alegre, C.: Quasi-uniform structures in linear lattices. Rocky Mountain J. Math. 23, 877–884 (1993)

García Raffi, L.M., Romaguera, S., Sánchez-Pérez, E.A.: The dual space of an asymmetric normed linear space. Quaestiones Math. 26, 83–96 (2003)

García Raffi, L.M., Romaguera, S., Sánchez-Pérez, E.A.: Sequence spaces and asymmetric norms in the theory of computational complexity. Math. Comput. Model. 36(1–2), 1–11 (2002)

García Raffi, L.M., Romaguera, S., Sánchez Pérez, E.A.: Weak topologies on asymmetric normed linear spaces and non-asymptotic criteria in the theory of Complexity Analysis of algorithm. J. Anal. Appl. 2(3), 125–138 (2004)

Jonard-Pérez, N., Sánchez-Pérez, E.A.: Local compactness in right bounded asymmetric normed spaces. Quaestiones Math. 41(4), 549–563 (2018)

Künzi, H.P.A.: Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric topology. C.E. Aull and R. Lowen (eds), Handbook of the History of General Topology, vol.3, pp. 853-968. Kluwer, Dordrecht (2001)

Romaguera, S., Schellekens, M.P., Valero, O.: Complexity spaces as quantitative domains of computation. Topology Appl. 158(7), 853–860 (2011)

Romaguera, S., Sánchez Alvarez, J.M., Sanchís, M.: On balancedness and D-completeness of the space of semi-Lipschitz functions. Acta Math. Hungar. 120, 383–390 (2008)

Shaefer, H.H.: Banach Lattices and Positive Operators. Springer (1974)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem