Mostrar el registro sencillo del ítem
dc.contributor.author | Alegre Gil, Maria Carmen | es_ES |
dc.date.accessioned | 2023-06-20T18:01:52Z | |
dc.date.available | 2023-06-20T18:01:52Z | |
dc.date.issued | 2022-08 | es_ES |
dc.identifier.issn | 1422-6383 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/194433 | |
dc.description.abstract | [EN] We obtain some quasi-metric properties of the dual cone of an asymmetric normed space. Thus, we prove that it is balanced, and hence its topology is completely regular. We also prove that it is complete in the sense of D. Doitchinov. These results generalize those obtained by Romaguera et al. in [18] because, in our study, the asymmetric normed space does not necessarily satisfy the T1 axiom. Moreover, we provide a class of asymmetric normed spaces whose dual cones are right K-sequentially complete. Finally, we represent an arbitrary asymmetric normed space as a function space by using the unit ball of its dual space. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Results in Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Quasi-metric | es_ES |
dc.subject | Asymmetric norm | es_ES |
dc.subject | Asymmetric normed linear space | es_ES |
dc.subject | Cone | es_ES |
dc.subject | Semicontinuous linear map | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Quasi-Metric Properties of the Dual Cone of an Asymmetric Normed Space | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00025-022-01720-6 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Alegre Gil, MC. (2022). Quasi-Metric Properties of the Dual Cone of an Asymmetric Normed Space. Results in Mathematics. 77(4):1-10. https://doi.org/10.1007/s00025-022-01720-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00025-022-01720-6 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 77 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\474247 | es_ES |
dc.description.references | Alegre, C.: Continuous operator on asymmetric normed spaces. Acta Math. Hungar. 122, 357–372 (2009) | es_ES |
dc.description.references | Alegre, C.: The weak topology in finite dimensional asymmetric normed spaces. Topology Appl. 264, 455–461 (2019) | es_ES |
dc.description.references | Alegre, C., Ferrer, J., Gregori, V.: On the Hahn-Banach theorem in certain linear quasi-uniform structures. Acta Math. Hungar. 82, 315–320 (1999) | es_ES |
dc.description.references | Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. Springer (2006) | es_ES |
dc.description.references | Bachir, M.: Asymmetric normed Baire space. Results Math. 76(176), 1–9 (2021) | es_ES |
dc.description.references | Bachir, M., Flores, G.: Index of symmetry and topological classification of asymmetric normed spaces. Rocky Mountain J. Math. 50(6), 1951–1964 (2020) | es_ES |
dc.description.references | Blasco, X., Reynoso-Meza, G., Sánchez-Pérez, E.A., Sánchez-Pérez, J.V.: Computing Optimal Distances to Pareto Sets of Multi-Objective Optimization Problems in Asymmetric Normed Lattices. Acta Appl. Math. 159, 75–93 (2019) | es_ES |
dc.description.references | Cobzas, S.: Functional Analysis in Asymmetric Normed Spaces. Birkhauser, Basel (2013) | es_ES |
dc.description.references | Cobzas, S., Mustata, C.: Extension of bounded linear functionals and best approximation in spaces with asymmetric norm. Rev. Anal. Numer. Theor. Approx. 33(1), 39–50 (2004) | es_ES |
dc.description.references | Doitchinov, D.: On completeness in quasi-metric spaces. Topology Appl. 30, 127–148 (1988) | es_ES |
dc.description.references | Ferrer, J., Gregori, V., Alegre, C.: Quasi-uniform structures in linear lattices. Rocky Mountain J. Math. 23, 877–884 (1993) | es_ES |
dc.description.references | García Raffi, L.M., Romaguera, S., Sánchez-Pérez, E.A.: The dual space of an asymmetric normed linear space. Quaestiones Math. 26, 83–96 (2003) | es_ES |
dc.description.references | García Raffi, L.M., Romaguera, S., Sánchez-Pérez, E.A.: Sequence spaces and asymmetric norms in the theory of computational complexity. Math. Comput. Model. 36(1–2), 1–11 (2002) | es_ES |
dc.description.references | García Raffi, L.M., Romaguera, S., Sánchez Pérez, E.A.: Weak topologies on asymmetric normed linear spaces and non-asymptotic criteria in the theory of Complexity Analysis of algorithm. J. Anal. Appl. 2(3), 125–138 (2004) | es_ES |
dc.description.references | Jonard-Pérez, N., Sánchez-Pérez, E.A.: Local compactness in right bounded asymmetric normed spaces. Quaestiones Math. 41(4), 549–563 (2018) | es_ES |
dc.description.references | Künzi, H.P.A.: Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric topology. C.E. Aull and R. Lowen (eds), Handbook of the History of General Topology, vol.3, pp. 853-968. Kluwer, Dordrecht (2001) | es_ES |
dc.description.references | Romaguera, S., Schellekens, M.P., Valero, O.: Complexity spaces as quantitative domains of computation. Topology Appl. 158(7), 853–860 (2011) | es_ES |
dc.description.references | Romaguera, S., Sánchez Alvarez, J.M., Sanchís, M.: On balancedness and D-completeness of the space of semi-Lipschitz functions. Acta Math. Hungar. 120, 383–390 (2008) | es_ES |
dc.description.references | Shaefer, H.H.: Banach Lattices and Positive Operators. Springer (1974) | es_ES |