- -

Quasi-Metric Properties of the Dual Cone of an Asymmetric Normed Space

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Quasi-Metric Properties of the Dual Cone of an Asymmetric Normed Space

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alegre Gil, Maria Carmen es_ES
dc.date.accessioned 2023-06-20T18:01:52Z
dc.date.available 2023-06-20T18:01:52Z
dc.date.issued 2022-08 es_ES
dc.identifier.issn 1422-6383 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194433
dc.description.abstract [EN] We obtain some quasi-metric properties of the dual cone of an asymmetric normed space. Thus, we prove that it is balanced, and hence its topology is completely regular. We also prove that it is complete in the sense of D. Doitchinov. These results generalize those obtained by Romaguera et al. in [18] because, in our study, the asymmetric normed space does not necessarily satisfy the T1 axiom. Moreover, we provide a class of asymmetric normed spaces whose dual cones are right K-sequentially complete. Finally, we represent an arbitrary asymmetric normed space as a function space by using the unit ball of its dual space. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Results in Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Quasi-metric es_ES
dc.subject Asymmetric norm es_ES
dc.subject Asymmetric normed linear space es_ES
dc.subject Cone es_ES
dc.subject Semicontinuous linear map es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Quasi-Metric Properties of the Dual Cone of an Asymmetric Normed Space es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00025-022-01720-6 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Alegre Gil, MC. (2022). Quasi-Metric Properties of the Dual Cone of an Asymmetric Normed Space. Results in Mathematics. 77(4):1-10. https://doi.org/10.1007/s00025-022-01720-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00025-022-01720-6 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 77 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\474247 es_ES
dc.description.references Alegre, C.: Continuous operator on asymmetric normed spaces. Acta Math. Hungar. 122, 357–372 (2009) es_ES
dc.description.references Alegre, C.: The weak topology in finite dimensional asymmetric normed spaces. Topology Appl. 264, 455–461 (2019) es_ES
dc.description.references Alegre, C., Ferrer, J., Gregori, V.: On the Hahn-Banach theorem in certain linear quasi-uniform structures. Acta Math. Hungar. 82, 315–320 (1999) es_ES
dc.description.references Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. Springer (2006) es_ES
dc.description.references Bachir, M.: Asymmetric normed Baire space. Results Math. 76(176), 1–9 (2021) es_ES
dc.description.references Bachir, M., Flores, G.: Index of symmetry and topological classification of asymmetric normed spaces. Rocky Mountain J. Math. 50(6), 1951–1964 (2020) es_ES
dc.description.references Blasco, X., Reynoso-Meza, G., Sánchez-Pérez, E.A., Sánchez-Pérez, J.V.: Computing Optimal Distances to Pareto Sets of Multi-Objective Optimization Problems in Asymmetric Normed Lattices. Acta Appl. Math. 159, 75–93 (2019) es_ES
dc.description.references Cobzas, S.: Functional Analysis in Asymmetric Normed Spaces. Birkhauser, Basel (2013) es_ES
dc.description.references Cobzas, S., Mustata, C.: Extension of bounded linear functionals and best approximation in spaces with asymmetric norm. Rev. Anal. Numer. Theor. Approx. 33(1), 39–50 (2004) es_ES
dc.description.references Doitchinov, D.: On completeness in quasi-metric spaces. Topology Appl. 30, 127–148 (1988) es_ES
dc.description.references Ferrer, J., Gregori, V., Alegre, C.: Quasi-uniform structures in linear lattices. Rocky Mountain J. Math. 23, 877–884 (1993) es_ES
dc.description.references García Raffi, L.M., Romaguera, S., Sánchez-Pérez, E.A.: The dual space of an asymmetric normed linear space. Quaestiones Math. 26, 83–96 (2003) es_ES
dc.description.references García Raffi, L.M., Romaguera, S., Sánchez-Pérez, E.A.: Sequence spaces and asymmetric norms in the theory of computational complexity. Math. Comput. Model. 36(1–2), 1–11 (2002) es_ES
dc.description.references García Raffi, L.M., Romaguera, S., Sánchez Pérez, E.A.: Weak topologies on asymmetric normed linear spaces and non-asymptotic criteria in the theory of Complexity Analysis of algorithm. J. Anal. Appl. 2(3), 125–138 (2004) es_ES
dc.description.references Jonard-Pérez, N., Sánchez-Pérez, E.A.: Local compactness in right bounded asymmetric normed spaces. Quaestiones Math. 41(4), 549–563 (2018) es_ES
dc.description.references Künzi, H.P.A.: Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric topology. C.E. Aull and R. Lowen (eds), Handbook of the History of General Topology, vol.3, pp. 853-968. Kluwer, Dordrecht (2001) es_ES
dc.description.references Romaguera, S., Schellekens, M.P., Valero, O.: Complexity spaces as quantitative domains of computation. Topology Appl. 158(7), 853–860 (2011) es_ES
dc.description.references Romaguera, S., Sánchez Alvarez, J.M., Sanchís, M.: On balancedness and D-completeness of the space of semi-Lipschitz functions. Acta Math. Hungar. 120, 383–390 (2008) es_ES
dc.description.references Shaefer, H.H.: Banach Lattices and Positive Operators. Springer (1974) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem