- -

Microwave oscillator and frequency comb in a silicon optomechanical cavity with a full phononic bandgap

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Microwave oscillator and frequency comb in a silicon optomechanical cavity with a full phononic bandgap

Mostrar el registro completo del ítem

Mercadé, L.; Martín, LL.; Griol Barres, A.; Navarro-Urrios, D.; Martínez, A. (2020). Microwave oscillator and frequency comb in a silicon optomechanical cavity with a full phononic bandgap. Nanophotonics. 9(11):3535-3544. https://doi.org/10.1515/nanoph-2020-0148

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194490

Ficheros en el ítem

Metadatos del ítem

Título: Microwave oscillator and frequency comb in a silicon optomechanical cavity with a full phononic bandgap
Autor: Mercadé, Laura Martín, Leopoldo L. Griol Barres, Amadeu Navarro-Urrios, Daniel Martínez, Alejandro
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Fecha difusión:
Resumen:
[EN] Cavity optomechanics has recently emerged as a new paradigm enabling the manipulation of mechanical motion via optical fields tightly confined in deformable cavities. When driving an optomechanical (OM) crystal cavity ...[+]
Palabras clave: Microwave oscillator , Optical frequency comb , Optomechanical crystal cavity , Phononic bandgap , Silicon photonics
Derechos de uso: Reconocimiento (by)
Fuente:
Nanophotonics. (issn: 2192-8606 )
DOI: 10.1515/nanoph-2020-0148
Editorial:
Walter de Gruyter GmbH
Versión del editor: https://doi.org/10.1515/nanoph-2020-0148
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094490-B-C21/ES/AVANZANDO EN CAVIDADES OPTOMECANICAS DE SILICO A TEMPERATURA AMBIENTE/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094490-B-C21/ES/AVANZANDO EN CAVIDADES OPTOMECANICAS DE SILICO A TEMPERATURA AMBIENTE/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F123//NANOFOTONICA AVANZADA SOBRE SILICIO (AVANTI)/
info:eu-repo/grantAgreement/EC/H2020/713450/EU
info:eu-repo/grantAgreement/UPV//PAID-01-16//Contratos Pre-Doctorales UPV 2016- Subprograma 1/
info:eu-repo/grantAgreement/GVA//PPC%2F2018%2F002//AYUDA PARQUES ALEJANDRO MARTINEZ ABIETAR/
info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F033//PROYECTO DE DESARROLLO DE LA TECNOLOGÍA BASADA EN CARBURO DE SILICIO (SIC) PARA SU APLICACIÓN EN NANOFOTÓNICA/
info:eu-repo/grantAgreement/MCIU//PRX18%2F00126/
[-]
Agradecimientos:
This work was supported by the European Commission (PHENOMEN H2020-EU-713450); Programa de Ayudas de Investigacion y Desarrolo (PAID-01-16) de la Universitat Politecnica de Valencia; Ministerio de Ciencia, Innovacion y ...[+]
Tipo: Artículo

References

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science, vol. 321, no. 5893, pp. 1172–1176, 2008. https://doi.org/10.1126/science.1156032.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys., vol. 86, no. 4, pp. 1391–1452, 2014. https://doi.org/10.1103/revmodphys.86.1391.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, et al., “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature, vol. 478, no. 7367, pp. 89–92, 2011. https://doi.org/10.1038/nature10461. [+]
T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science, vol. 321, no. 5893, pp. 1172–1176, 2008. https://doi.org/10.1126/science.1156032.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys., vol. 86, no. 4, pp. 1391–1452, 2014. https://doi.org/10.1103/revmodphys.86.1391.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, et al., “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature, vol. 478, no. 7367, pp. 89–92, 2011. https://doi.org/10.1038/nature10461.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett., vol. 102, no. 4, p. 043902, 2009. https://doi.org/10.1103/physrevlett.102.043902.

I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett., vol. 104, no. 8, p. 083901, 2010. https://doi.org/10.1103/physrevlett.104.083901.

S. Weis, R. Rivière, S. Deléglise, et al., “Optomechanically induced transparency,” Science, vol. 330, no. 6010, pp. 1520–1523, 2010. https://doi.org/10.1126/science.1195596.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, et al., “Electromagnetically induced transparency and slow light with optomechanics,” Nature, vol. 472, no. 7341, pp. 69–73, 2011. https://doi.org/10.1038/nature09933.

F. Ruesink, M. A. Miri, A. Alù, and E. Verhagen, “Nonreciprocity and magnetic-free isolation based on optomechanical interactions,” Nat. Commun., vol. 7, no. 1, p. 13662, 2016. https://doi.org/10.1038/ncomms13662.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature, vol. 462, no. 7269, pp. 78–82, 2009. https://doi.org/10.1038/nature08524.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon., vol. 1, no. 6, pp. 319–330, 2007. https://doi.org/10.1038/nphoton.2007.89.

M. Hossein-Zadeh and K. J. Vahala, “Photonic RF down-converter based on optomechanical oscillation,” IEEE Photon. Technol. Lett., vol. 20, no. 4, pp. 234–236, 2008. https://doi.org/10.1109/lpt.2007.912991.

I. Ghorbel, R. Zhu, D. Dolfi, et al., “Optomechanical gigahertz oscillator made of a two photon absorption free piezoelectric III/V semiconductor,” APL Photon., vol. 4, no. 11, p. 116103, 2019. https://doi.org/10.1063/1.5121774.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett., vol. 95, no. 3, p. 033901, 2005. https://doi.org/10.1103/physrevlett.95.033901.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation – pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett., vol. 94, no. 22, p. 223902, 2005. https://doi.org/10.1103/physrevlett.94.223902.

M.-A. Miri, G. D’Aguanno, and A. Alú, “Optomechanical frequency combs,” New J. Phys., vol. 20, no. 4, p. 043013, 2018. https://doi.org/10.1088/1367-2630/aab5c6.

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radiofrequency photonics,” Laser Photon. Rev., vol. 8, no. 3, pp. 368–393, 2014. https://doi.org/10.1002/lpor.201300126.

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett., vol. 101, no. 8, p. 081115, 2012. https://doi.org/10.1063/1.4747726.

Y. Pennec, B. Djafari Rouhani, C. Li, et al., “Band gaps and cavity modes in dual phononic and photonic strip waveguides,” AIP Adv., vol. 1, no. 4, p. 041901, 2011. https://doi.org/10.1063/1.3675799.

A. G. Krause, J. T. Hill, M. Ludwig, et al., “Nonlinear radiation pressure dynamics in an optomechanical crystal,” Phys. Rev. Lett., vol. 115, no. 23, p. 233601, 2015. https://doi.org/10.1103/physrevlett.115.233601.

L. Qiu, I. Shomroni, P. Seidler, and T. J. Kippenberg, “High-fidelity laser cooling to the quantum ground state of a silicon nanomechanical oscillator,” 2019, arXiv: 1903.10242 [quant-ph].

K. Fang, M. H. Matheny, X. Luan, and O. Painter, “Optical transduction and routing of microwave phonons in cavity-optomechanical circuits,” Nat. Photon., vol. 10, p. 489, 2016. https://doi.org/10.1038/nphoton.2016.107.

G. S. MacCabe, H. Ren, J. Luo, et al., “Phononic bandgap nanoacoustic cavity with ultralong phonon lifetime,” 2019, arXiv: 1901.04129 [cond-mat.mes-hall].

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, et al., “A one-dimensional optomechanical crystal with a complete phononic band gap,” Nat. Commun., vol. 5, no. 1, p. 4452, 2014. https://doi.org/10.1038/ncomms5452.

D. Navarro-Urrios, N. E. Capuj, J. Gomis-Bresco, et al., “A self-stabilized coherent phonon source driven by optical forces,” Sci. Rep., vol. 5, p. 15733, 2015. https://doi.org/10.1038/srep15733.

D. Navarro-Urrios, N. E. Capuj, M. F. Colombano, et al., “Nonlinear dynamics and chaos in an optomechanical beam,” Nat. Commun., vol. 8, no. 1, p. 14965, 2017. https://doi.org/10.1038/ncomms14965.

M. F. Colombano, G. Arregui, N. E. Capuj, et al., “Synchronization of optomechanical nanobeams by mechanical interaction,” Phys. Rev. Lett., vol. 123, no. 1, p. 017402, 2019. https://doi.org/10.1103/physrevlett.123.017402.

M. Oudich, S. El-Jallal, Y. Pennec, et al., “Optomechanic interaction in a corrugated phoxonic nanobeam cavity,” Phys. Rev. B, vol. 89, no. 24, p. 245122, 2014. https://doi.org/10.1103/physrevb.89.245122.

L. Maleki, “The optoelectronic oscillator,” Nat. Photon., vol. 5, no. 12, pp. 728–730, 2011. https://doi.org/10.1038/nphoton.2011.293.

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B, vol. 13, no. 8, pp. 1725–1735, 1996. https://doi.org/10.1364/josab.13.001725.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun., vol. 4, no. 1, p. 2097, 2013. https://doi.org/10.1038/ncomms3097.

R. Van Laer, R. Baets, and D. Van Thourhout, “Unifying Brillouin scattering and cavity optomechanics,” Phys. Rev. A, vol. 93, no. 5, p. 053828, 2016. https://doi.org/10.1103/physreva.93.053828.

D. Navarro-Urrios, J. Gomis-Bresco, S. El-Jallal, et al., “Dynamical back-action at 5.5 GHz in a corrugated optomechanical beam,” AIP Adv., vol. 4, no. 12, p. 124601, 2014. https://doi.org/10.1063/1.4902171.

F. Pan, K. Cui, G. Bai, et al., “Radiation-pressure-antidamping enhanced optomechanical spring sensing,” ACS Photon., vol. 5, no. 10, pp. 4164–4169, 2018. https://doi.org/10.1021/acsphotonics.8b00968.

S. Tallur, S. Sridaran, S. A. Bhave, and T. Carmon, “Phase noise modeling of opto-mechanical oscillators,” in 2010 IEEE International Frequency Control Symposium, 2010, pp. 268–272.

S. Tallur, S. Sridaran, and S. A. Bhave, “A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator,” Opt. Express, vol. 19, no. 24, pp. 24522–24529, 2011. https://doi.org/10.1364/oe.19.024522.

E. Rubiola, Phase Noise and Frequency Stability in Oscillators. The Cambridge RF and Microwave Engineering Series, Cambridge, England: Cambridge University Press, 2008.

https://www.keysight.com/us/en/assets/7018-08250/datasheets/5989-7572.pdf.

S. Sridaran and S. A. Bhave, “1.12 GHz opto-acoustic oscillator,” in 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012, pp. 664–667.

X. Luan, Y. Huang, Y. Li, et al., “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep., vol. 4, p. 6842, 2014. https://doi.org/10.1038/srep06842.

M. S. Kang, A. Nazarkin, A. Brenn, and P. S. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys., vol. 5, no. 4, pp. 276–280, 2009. https://doi.org/10.1038/nphys1217.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature, vol. 450, no. 7173, pp. 1214–1217, 2007. https://doi.org/10.1038/nature06401.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science, vol. 332, no. 6029, pp. 555–559, 2011. https://doi.org/10.1126/science.1193968.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Surface acoustic wave optomechanical oscillator and frequency comb generator,” Opt. Lett., vol. 36, no. 17, pp. 3338–3340, 2011. https://doi.org/10.1364/ol.36.003338.

A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics,” Optica, vol. 6, no. 2, pp. 213–232, 2019. https://doi.org/10.1364/optica.6.000213.

D. Navarro-Urrios, J. Gomis-Bresco, N. E. Capuj, et al., “Optical and mechanical mode tuning in an optomechanical crystal with light-induced thermal effects,” J. Appl. Phys., vol. 116, no. 9, p. 093506, 2014. https://doi.org/10.1063/1.4894623.

M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quant. Electron., vol. 16, no. 1, pp. 276–287, 2010. https://doi.org/10.1109/jstqe.2009.2031066.

M. Hossein-Zadeh and K. J. Vahala, “Observation of injection locking in an optomechanical RF oscillator,” Appl. Phys. Lett., vol. 93, no. 19, p. 191115, 2008. https://doi.org/10.1063/1.3028024.

M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, “Quantum transduction of optical photons from a superconducting qubit,” 2020, arXiv: 2004.04838 [quant-ph].

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem