- -

Microwave oscillator and frequency comb in a silicon optomechanical cavity with a full phononic bandgap

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Microwave oscillator and frequency comb in a silicon optomechanical cavity with a full phononic bandgap

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mercadé, Laura es_ES
dc.contributor.author Martín, Leopoldo L. es_ES
dc.contributor.author Griol Barres, Amadeu es_ES
dc.contributor.author Navarro-Urrios, Daniel es_ES
dc.contributor.author Martínez, Alejandro es_ES
dc.date.accessioned 2023-06-22T18:01:37Z
dc.date.available 2023-06-22T18:01:37Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 2192-8606 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194490
dc.description.abstract [EN] Cavity optomechanics has recently emerged as a new paradigm enabling the manipulation of mechanical motion via optical fields tightly confined in deformable cavities. When driving an optomechanical (OM) crystal cavity with a laser blue-detuned with respect to the optical resonance, the mechanical motion is amplified, ultimately resulting in phonon lasing at MHz and even GHz frequencies. In this work, we show that a silicon OM crystal cavity performs as an OM microwave oscillator when pumped above the threshold for self-sustained OM oscillations. To this end, we use an OM cavity designed to have a breathing-like mechanical mode at 3.897 GHz in a full phononic bandgap. Our measurements show that the first harmonic of the detected signal displays a phase noise of ¿¿100 dBc/Hz at 100 kHz. Stronger blue-detuned driving leads eventually to the formation of an OM frequency comb, whose lines are spaced by the mechanical frequency. We also measure the phase noise for higher-order harmonics and show that, unlike in Brillouin oscillators, the noise is increased as corresponding to classical harmonic mixing. Finally, we present real-time measurements of the comb waveform and show that it can be fitted to a theoretical model recently presented. Our results suggest that silicon OM cavities could be relevant processing elements in microwave photonics and optical RF processing, in particular in disciplines requiring low weight, compactness and fiber interconnection. es_ES
dc.description.sponsorship This work was supported by the European Commission (PHENOMEN H2020-EU-713450); Programa de Ayudas de Investigacion y Desarrolo (PAID-01-16) de la Universitat Politecnica de Valencia; Ministerio de Ciencia, Innovacion y Universidades (PGC2018-094490-B, PRX18/00126) and Generalitat Valenciana (PROMETEO/2019/123, PPC/2018/002, IDIFEDER/2018/033). es_ES
dc.language Inglés es_ES
dc.publisher Walter de Gruyter GmbH es_ES
dc.relation.ispartof Nanophotonics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Microwave oscillator es_ES
dc.subject Optical frequency comb es_ES
dc.subject Optomechanical crystal cavity es_ES
dc.subject Phononic bandgap es_ES
dc.subject Silicon photonics es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Microwave oscillator and frequency comb in a silicon optomechanical cavity with a full phononic bandgap es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1515/nanoph-2020-0148 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094490-B-C21/ES/AVANZANDO EN CAVIDADES OPTOMECANICAS DE SILICO A TEMPERATURA AMBIENTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F123//NANOFOTONICA AVANZADA SOBRE SILICIO (AVANTI)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/713450/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-16//Contratos Pre-Doctorales UPV 2016- Subprograma 1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PPC%2F2018%2F002//AYUDA PARQUES ALEJANDRO MARTINEZ ABIETAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F033//PROYECTO DE DESARROLLO DE LA TECNOLOGÍA BASADA EN CARBURO DE SILICIO (SIC) PARA SU APLICACIÓN EN NANOFOTÓNICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//PRX18%2F00126/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Mercadé, L.; Martín, LL.; Griol Barres, A.; Navarro-Urrios, D.; Martínez, A. (2020). Microwave oscillator and frequency comb in a silicon optomechanical cavity with a full phononic bandgap. Nanophotonics. 9(11):3535-3544. https://doi.org/10.1515/nanoph-2020-0148 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1515/nanoph-2020-0148 es_ES
dc.description.upvformatpinicio 3535 es_ES
dc.description.upvformatpfin 3544 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 11 es_ES
dc.subject.asignatura Proyectos de ingeniería física 14503 / T - Grado en ingeniería física 205 es_ES
dc.relation.pasarela S\417404 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science, vol. 321, no. 5893, pp. 1172–1176, 2008. https://doi.org/10.1126/science.1156032. es_ES
dc.description.references M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys., vol. 86, no. 4, pp. 1391–1452, 2014. https://doi.org/10.1103/revmodphys.86.1391. es_ES
dc.description.references J. Chan, T. P. Alegre, A. H. Safavi-Naeini, et al., “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature, vol. 478, no. 7367, pp. 89–92, 2011. https://doi.org/10.1038/nature10461. es_ES
dc.description.references I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett., vol. 102, no. 4, p. 043902, 2009. https://doi.org/10.1103/physrevlett.102.043902. es_ES
dc.description.references I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett., vol. 104, no. 8, p. 083901, 2010. https://doi.org/10.1103/physrevlett.104.083901. es_ES
dc.description.references S. Weis, R. Rivière, S. Deléglise, et al., “Optomechanically induced transparency,” Science, vol. 330, no. 6010, pp. 1520–1523, 2010. https://doi.org/10.1126/science.1195596. es_ES
dc.description.references A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, et al., “Electromagnetically induced transparency and slow light with optomechanics,” Nature, vol. 472, no. 7341, pp. 69–73, 2011. https://doi.org/10.1038/nature09933. es_ES
dc.description.references F. Ruesink, M. A. Miri, A. Alù, and E. Verhagen, “Nonreciprocity and magnetic-free isolation based on optomechanical interactions,” Nat. Commun., vol. 7, no. 1, p. 13662, 2016. https://doi.org/10.1038/ncomms13662. es_ES
dc.description.references M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature, vol. 462, no. 7269, pp. 78–82, 2009. https://doi.org/10.1038/nature08524. es_ES
dc.description.references J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon., vol. 1, no. 6, pp. 319–330, 2007. https://doi.org/10.1038/nphoton.2007.89. es_ES
dc.description.references M. Hossein-Zadeh and K. J. Vahala, “Photonic RF down-converter based on optomechanical oscillation,” IEEE Photon. Technol. Lett., vol. 20, no. 4, pp. 234–236, 2008. https://doi.org/10.1109/lpt.2007.912991. es_ES
dc.description.references I. Ghorbel, R. Zhu, D. Dolfi, et al., “Optomechanical gigahertz oscillator made of a two photon absorption free piezoelectric III/V semiconductor,” APL Photon., vol. 4, no. 11, p. 116103, 2019. https://doi.org/10.1063/1.5121774. es_ES
dc.description.references T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett., vol. 95, no. 3, p. 033901, 2005. https://doi.org/10.1103/physrevlett.95.033901. es_ES
dc.description.references T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation – pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett., vol. 94, no. 22, p. 223902, 2005. https://doi.org/10.1103/physrevlett.94.223902. es_ES
dc.description.references M.-A. Miri, G. D’Aguanno, and A. Alú, “Optomechanical frequency combs,” New J. Phys., vol. 20, no. 4, p. 043013, 2018. https://doi.org/10.1088/1367-2630/aab5c6. es_ES
dc.description.references V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radiofrequency photonics,” Laser Photon. Rev., vol. 8, no. 3, pp. 368–393, 2014. https://doi.org/10.1002/lpor.201300126. es_ES
dc.description.references J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett., vol. 101, no. 8, p. 081115, 2012. https://doi.org/10.1063/1.4747726. es_ES
dc.description.references Y. Pennec, B. Djafari Rouhani, C. Li, et al., “Band gaps and cavity modes in dual phononic and photonic strip waveguides,” AIP Adv., vol. 1, no. 4, p. 041901, 2011. https://doi.org/10.1063/1.3675799. es_ES
dc.description.references A. G. Krause, J. T. Hill, M. Ludwig, et al., “Nonlinear radiation pressure dynamics in an optomechanical crystal,” Phys. Rev. Lett., vol. 115, no. 23, p. 233601, 2015. https://doi.org/10.1103/physrevlett.115.233601. es_ES
dc.description.references L. Qiu, I. Shomroni, P. Seidler, and T. J. Kippenberg, “High-fidelity laser cooling to the quantum ground state of a silicon nanomechanical oscillator,” 2019, arXiv: 1903.10242 [quant-ph]. es_ES
dc.description.references K. Fang, M. H. Matheny, X. Luan, and O. Painter, “Optical transduction and routing of microwave phonons in cavity-optomechanical circuits,” Nat. Photon., vol. 10, p. 489, 2016. https://doi.org/10.1038/nphoton.2016.107. es_ES
dc.description.references G. S. MacCabe, H. Ren, J. Luo, et al., “Phononic bandgap nanoacoustic cavity with ultralong phonon lifetime,” 2019, arXiv: 1901.04129 [cond-mat.mes-hall]. es_ES
dc.description.references J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, et al., “A one-dimensional optomechanical crystal with a complete phononic band gap,” Nat. Commun., vol. 5, no. 1, p. 4452, 2014. https://doi.org/10.1038/ncomms5452. es_ES
dc.description.references D. Navarro-Urrios, N. E. Capuj, J. Gomis-Bresco, et al., “A self-stabilized coherent phonon source driven by optical forces,” Sci. Rep., vol. 5, p. 15733, 2015. https://doi.org/10.1038/srep15733. es_ES
dc.description.references D. Navarro-Urrios, N. E. Capuj, M. F. Colombano, et al., “Nonlinear dynamics and chaos in an optomechanical beam,” Nat. Commun., vol. 8, no. 1, p. 14965, 2017. https://doi.org/10.1038/ncomms14965. es_ES
dc.description.references M. F. Colombano, G. Arregui, N. E. Capuj, et al., “Synchronization of optomechanical nanobeams by mechanical interaction,” Phys. Rev. Lett., vol. 123, no. 1, p. 017402, 2019. https://doi.org/10.1103/physrevlett.123.017402. es_ES
dc.description.references M. Oudich, S. El-Jallal, Y. Pennec, et al., “Optomechanic interaction in a corrugated phoxonic nanobeam cavity,” Phys. Rev. B, vol. 89, no. 24, p. 245122, 2014. https://doi.org/10.1103/physrevb.89.245122. es_ES
dc.description.references L. Maleki, “The optoelectronic oscillator,” Nat. Photon., vol. 5, no. 12, pp. 728–730, 2011. https://doi.org/10.1038/nphoton.2011.293. es_ES
dc.description.references X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B, vol. 13, no. 8, pp. 1725–1735, 1996. https://doi.org/10.1364/josab.13.001725. es_ES
dc.description.references J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun., vol. 4, no. 1, p. 2097, 2013. https://doi.org/10.1038/ncomms3097. es_ES
dc.description.references R. Van Laer, R. Baets, and D. Van Thourhout, “Unifying Brillouin scattering and cavity optomechanics,” Phys. Rev. A, vol. 93, no. 5, p. 053828, 2016. https://doi.org/10.1103/physreva.93.053828. es_ES
dc.description.references D. Navarro-Urrios, J. Gomis-Bresco, S. El-Jallal, et al., “Dynamical back-action at 5.5 GHz in a corrugated optomechanical beam,” AIP Adv., vol. 4, no. 12, p. 124601, 2014. https://doi.org/10.1063/1.4902171. es_ES
dc.description.references F. Pan, K. Cui, G. Bai, et al., “Radiation-pressure-antidamping enhanced optomechanical spring sensing,” ACS Photon., vol. 5, no. 10, pp. 4164–4169, 2018. https://doi.org/10.1021/acsphotonics.8b00968. es_ES
dc.description.references S. Tallur, S. Sridaran, S. A. Bhave, and T. Carmon, “Phase noise modeling of opto-mechanical oscillators,” in 2010 IEEE International Frequency Control Symposium, 2010, pp. 268–272. es_ES
dc.description.references S. Tallur, S. Sridaran, and S. A. Bhave, “A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator,” Opt. Express, vol. 19, no. 24, pp. 24522–24529, 2011. https://doi.org/10.1364/oe.19.024522. es_ES
dc.description.references E. Rubiola, Phase Noise and Frequency Stability in Oscillators. The Cambridge RF and Microwave Engineering Series, Cambridge, England: Cambridge University Press, 2008. es_ES
dc.description.references https://www.keysight.com/us/en/assets/7018-08250/datasheets/5989-7572.pdf. es_ES
dc.description.references S. Sridaran and S. A. Bhave, “1.12 GHz opto-acoustic oscillator,” in 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012, pp. 664–667. es_ES
dc.description.references X. Luan, Y. Huang, Y. Li, et al., “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep., vol. 4, p. 6842, 2014. https://doi.org/10.1038/srep06842. es_ES
dc.description.references M. S. Kang, A. Nazarkin, A. Brenn, and P. S. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys., vol. 5, no. 4, pp. 276–280, 2009. https://doi.org/10.1038/nphys1217. es_ES
dc.description.references P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature, vol. 450, no. 7173, pp. 1214–1217, 2007. https://doi.org/10.1038/nature06401. es_ES
dc.description.references T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science, vol. 332, no. 6029, pp. 555–559, 2011. https://doi.org/10.1126/science.1193968. es_ES
dc.description.references A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Surface acoustic wave optomechanical oscillator and frequency comb generator,” Opt. Lett., vol. 36, no. 17, pp. 3338–3340, 2011. https://doi.org/10.1364/ol.36.003338. es_ES
dc.description.references A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics,” Optica, vol. 6, no. 2, pp. 213–232, 2019. https://doi.org/10.1364/optica.6.000213. es_ES
dc.description.references D. Navarro-Urrios, J. Gomis-Bresco, N. E. Capuj, et al., “Optical and mechanical mode tuning in an optomechanical crystal with light-induced thermal effects,” J. Appl. Phys., vol. 116, no. 9, p. 093506, 2014. https://doi.org/10.1063/1.4894623. es_ES
dc.description.references M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quant. Electron., vol. 16, no. 1, pp. 276–287, 2010. https://doi.org/10.1109/jstqe.2009.2031066. es_ES
dc.description.references M. Hossein-Zadeh and K. J. Vahala, “Observation of injection locking in an optomechanical RF oscillator,” Appl. Phys. Lett., vol. 93, no. 19, p. 191115, 2008. https://doi.org/10.1063/1.3028024. es_ES
dc.description.references M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, “Quantum transduction of optical photons from a superconducting qubit,” 2020, arXiv: 2004.04838 [quant-ph]. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem