- -

Compact resonant systems for perfect and broadband sound absorption in wide waveguides in transmission problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Compact resonant systems for perfect and broadband sound absorption in wide waveguides in transmission problems

Mostrar el registro completo del ítem

Boulvert, J.; Gabard, G.; Romero-García, V.; Groby, J. (2022). Compact resonant systems for perfect and broadband sound absorption in wide waveguides in transmission problems. Scientific Reports. 12(1):1-13. https://doi.org/10.1038/s41598-022-13944-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194494

Ficheros en el ítem

Metadatos del ítem

Título: Compact resonant systems for perfect and broadband sound absorption in wide waveguides in transmission problems
Autor: Boulvert, Jean Gabard, Gwenael Romero-García, Vicente Groby, Jean-Philippe
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Fecha difusión:
Resumen:
[EN] This work deals with wave absorption in reciprocal asymmetric scattering problem by addressing the acoustic problem of compact absorbers for perfect unidirectional absorption, flush mounted to the walls of wide ducts. ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-022-13944-1
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-022-13944-1
Código del Proyecto:
info:eu-repo/grantAgreement/ANR//ANR-16-CHIN-0002/
Agradecimientos:
The authors acknowledge the financial support from the ANR industrial chair MACIA (ANR-16-CHIN-0002). They also acknowledge the Safran group for supporting and funding this research.
Tipo: Artículo

References

Ma, G., Yang, M., Xiao, S., Yang, Z. & Sheng, P. Acoustic metasurface with hybrid resonances. Nat. Mater. 13, 873–878. https://doi.org/10.1038/nmat3994 (2014).

Watts, C. M., Liu, X. & Padilla, W. J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98–OP120. https://doi.org/10.1002/adma.201200674 (2012).

Piper, J. R., Liu, V. & Fan, S. Total absorption by degenerate critical coupling. Appl. Phys. Lett. 104, 251110. https://doi.org/10.1063/1.4885517 (2014). [+]
Ma, G., Yang, M., Xiao, S., Yang, Z. & Sheng, P. Acoustic metasurface with hybrid resonances. Nat. Mater. 13, 873–878. https://doi.org/10.1038/nmat3994 (2014).

Watts, C. M., Liu, X. & Padilla, W. J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98–OP120. https://doi.org/10.1002/adma.201200674 (2012).

Piper, J. R., Liu, V. & Fan, S. Total absorption by degenerate critical coupling. Appl. Phys. Lett. 104, 251110. https://doi.org/10.1063/1.4885517 (2014).

Yang, M. et al. Subwavelength total acoustic absorption with degenerate resonators. Appl. Phys. Lett. 107, 104104. https://doi.org/10.1063/1.4930944 (2015).

Romero-García, V. et al. Perfect absorption in mirror-symmetric acoustic metascreens. Phys. Rev. Appl. 14, 054055. https://doi.org/10.1103/PhysRevApplied.14.054055 (2020).

Yang, M. & Sheng, P. Sound absorption structures: from porous media to acoustic metamaterials. Annu. Rev. Mater. Res. 47, 83–114. https://doi.org/10.1146/annurev-matsci-070616-124032 (2017).

Jiménez, N., Romero-García, V., Pagneux, V. & Groby, J.-P. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Phys. Rev. B.https://doi.org/10.1103/PhysRevB.95.014205 (2017).

Merkel, A., Theocharis, G., Richoux, O., Romero-García, V. & Pagneux, V. Control of acoustic absorption in one-dimensional scattering by resonant scatterers. Appl. Phys. Lett. 107, 2441. https://doi.org/10.1063/1.4938121 (2015).

Jiménez, N., Romero-García, V., Pagneux, V. & Groby, J.-P. Rainbow-trapping absorbers: broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Sci. Rep. 7, 13595. https://doi.org/10.1038/s41598-017-13706-4 (2017).

Long, H. et al. Tunable and broadband asymmetric sound absorptions with coupling of acoustic bright and dark modes. J. Sound Vib. 479, 115371. https://doi.org/10.1016/j.jsv.2020.115371 (2020).

Romero-García, V. et al. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Sci. Rep. 6, 19519. https://doi.org/10.1038/srep19519 (2016).

Wang, X., Luo, X., Zhao, H. & Huang, Z. Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials. Appl. Phys. Lett. 112, 021901. https://doi.org/10.1063/1.5018180 (2018).

Long, H., Shao, C., Cheng, Y., Tao, J. & Liu, X. High absorption asymmetry enabled by a deep-subwavelength ventilated sound absorber. Appl. Phys. Lett. 118, 263502. https://doi.org/10.1063/5.0055157 (2021).

Long, H., Cheng, Y. & Liu, X. Asymmetric absorber with multiband and broadband for low-frequency sound. Appl. Phys. Lett. 6 (2017).

Long, H., Cheng, Y. & Liu, X. Reconfigurable sound anomalous absorptions in transparent waveguide with modularized multi-order helmholtz resonator. Sci. Rep. 8, 15678. https://doi.org/10.1038/s41598-018-34117-z (2018).

Guo, J., Zhang, X. & Fang, Y. Broadband forbidden transmission by multiple CPA-based detuned Helmholtz resonators. In ICSV26, 8 (Montréal, 2019).

Boulvert, J. et al. Perfect, broadband, and sub-wavelength absorption with asymmetric absorbers: Realization for duct acoustics with 3D printed porous resonators. J. Sound Vib. 523, 116687. https://doi.org/10.1016/j.jsv.2021.116687 (2022).

Gao, N., Qu, S., Li, J., Wang, J. & Chen, W. Harnessing post-buckling deformation to tune sound absorption in soft Helmholtz absorbers. Int. J. Mech. Sci. 208, 106695. https://doi.org/10.1016/j.ijmecsci.2021.106695 (2021).

Li, L.-J. et al. Broadband compact acoustic absorber with high-efficiency ventilation performance. Appl. Phys. Lett. 113, 103501. https://doi.org/10.1063/1.5038184 (2018).

Yang, M., Chen, S., Fu, C. & Sheng, P. Optimal sound-absorbing structures. Mater. Horizons 4, 673–680. https://doi.org/10.1039/C7MH00129K (2017).

Huang, S. et al. Compact broadband acoustic sink with coherently coupled weak resonances. Sci. Bull. 65, 373–379. https://doi.org/10.1016/j.scib.2019.11.008 (2020).

Nguyen, H. et al. Broadband acoustic silencer with ventilation based on slit-type Helmholtz resonators. Appl. Phys. Lett. 117, 134103. https://doi.org/10.1063/5.0024018 (2020).

Cervenka, M., Bednaík, M. & Groby, J.-P. Optimized reactive silencers composed of closely-spaced elongated side-branch resonators. J. Acoust. Soc. Am. 145, 2210–2220. https://doi.org/10.1121/1.5097167 (2019).

Huang, W., Schwan, L., Romero-García, V., Génevaux, J.-M. & Groby, J.-P. 3D-printed sound absorbing metafluid inspired by cereal straws. Sci. Rep. 9, 8496. https://doi.org/10.1038/s41598-019-44891-z (2019).

Kumar, S. & Lee, H. P. Recent advances in acoustic metamaterials for simultaneous sound attenuation and air ventilation performances. Curr. Comput. Aided Drug Des. 10, 686. https://doi.org/10.3390/cryst10080686 (2020).

Li, Y. & Assouar, B. M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl. Phys. Lett. 108, 063502. https://doi.org/10.1063/1.4941338 (2016).

Pagneux, V., Amir, N. & Kergomard, J. A study of wave propagation in varying cross-section waveguides by modal decomposition. Part I. Theory and validation. J. Acoust. Soc. Am. 100, 2034–2048. https://doi.org/10.1121/1.417913 (1996).

Bi, W., Pagneux, V., Lafarge, D. & Aurégan, Y. Modelling of sound propagation in a non-uniform lined duct using a multi-modal propagation method. J. Sound Vib. 289, 1091–1111. https://doi.org/10.1016/j.jsv.2005.03.021 (2006).

Boyd, J. P. Chebyshev and Fourier spectral methods (Courier Corporation, 2001).

Stinson, M. R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape. J. Acoust. Soc. Am. 89, 550–558. https://doi.org/10.1121/1.400379 (1991).

Nelder, J. A. & Mead, R. A simplex method for function minimization. Comput. J. 7, 308–313. https://doi.org/10.1093/comjnl/7.4.308 (1965).

Bonyadi, M. R. & Michalewicz, Z. Particle swarm optimization for single objective continuous space problems: a review. Evol. Comput. 25, 1–54. https://doi.org/10.1162/EVCO_r_00180 (2017).

Heris, S.M.K. Particle swarm optimization in MATLAB. URL: https://yarpiz.com/50/ypea102-particle-swarm-optimization.

Romero-García, V., Theocharis, G., Richoux, O. & Pagneux, V. Use of complex frequency plane to design broadband and sub-wavelength absorbers. J. Acoust. Soc. Am. 139, 3395–3403. https://doi.org/10.1121/1.4950708 (2016).

Groby, J.-P., Pommier, R. & Aurégan, Y. Use of slow sound to design perfect and broadband passive sound absorbing materials. J. Acoust. Soc. Am. 139, 1660–1671. https://doi.org/10.1121/1.4945101 (2016).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem