- -

Compact resonant systems for perfect and broadband sound absorption in wide waveguides in transmission problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Compact resonant systems for perfect and broadband sound absorption in wide waveguides in transmission problems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boulvert, Jean es_ES
dc.contributor.author Gabard, Gwenael es_ES
dc.contributor.author Romero-García, Vicente es_ES
dc.contributor.author Groby, Jean-Philippe es_ES
dc.date.accessioned 2023-06-22T18:02:35Z
dc.date.available 2023-06-22T18:02:35Z
dc.date.issued 2022-06-15 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194494
dc.description.abstract [EN] This work deals with wave absorption in reciprocal asymmetric scattering problem by addressing the acoustic problem of compact absorbers for perfect unidirectional absorption, flush mounted to the walls of wide ducts. These absorbers are composed of several side-by-side resonators that are usually of different geometry and thus detuned to yield an asymmetric acoustic response. A simple lumped-element model analysis is performed to link the dependence of the optimal resonators surface impedance, resonance frequency, and losses to the duct cross-sectional area and resonator spacing. This analysis unifies those of several specific configurations into a unique problem. In addition, the impact of the potential evanescent coupling between the resonators, which is usually neglected, is carefully studied. This coupling can have a strong impact especially on the behavior of compact absorbers lining wide ducts. To reduce the evanescent coupling, the resonators should be relatively small and therefore their resonances should be damped, and not arranged by order of increasing or decreasing resonant frequency. Finally, such an absorber is designed and optimized for perfect unidirectional absorption to prove the relevance of the analysis. The absorber is 30 cm long and 5 cm thick and covers a single side of a 14.8 x 15 cm(2) rectangular duct. A mean absorption coefficient of 99% is obtained experimentally between 700 and 800 Hz. es_ES
dc.description.sponsorship The authors acknowledge the financial support from the ANR industrial chair MACIA (ANR-16-CHIN-0002). They also acknowledge the Safran group for supporting and funding this research. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Compact resonant systems for perfect and broadband sound absorption in wide waveguides in transmission problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-022-13944-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-16-CHIN-0002/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Boulvert, J.; Gabard, G.; Romero-García, V.; Groby, J. (2022). Compact resonant systems for perfect and broadband sound absorption in wide waveguides in transmission problems. Scientific Reports. 12(1):1-13. https://doi.org/10.1038/s41598-022-13944-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-022-13944-1 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 35705604 es_ES
dc.identifier.pmcid PMC9200824 es_ES
dc.relation.pasarela S\475908 es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.description.references Ma, G., Yang, M., Xiao, S., Yang, Z. & Sheng, P. Acoustic metasurface with hybrid resonances. Nat. Mater. 13, 873–878. https://doi.org/10.1038/nmat3994 (2014). es_ES
dc.description.references Watts, C. M., Liu, X. & Padilla, W. J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98–OP120. https://doi.org/10.1002/adma.201200674 (2012). es_ES
dc.description.references Piper, J. R., Liu, V. & Fan, S. Total absorption by degenerate critical coupling. Appl. Phys. Lett. 104, 251110. https://doi.org/10.1063/1.4885517 (2014). es_ES
dc.description.references Yang, M. et al. Subwavelength total acoustic absorption with degenerate resonators. Appl. Phys. Lett. 107, 104104. https://doi.org/10.1063/1.4930944 (2015). es_ES
dc.description.references Romero-García, V. et al. Perfect absorption in mirror-symmetric acoustic metascreens. Phys. Rev. Appl. 14, 054055. https://doi.org/10.1103/PhysRevApplied.14.054055 (2020). es_ES
dc.description.references Yang, M. & Sheng, P. Sound absorption structures: from porous media to acoustic metamaterials. Annu. Rev. Mater. Res. 47, 83–114. https://doi.org/10.1146/annurev-matsci-070616-124032 (2017). es_ES
dc.description.references Jiménez, N., Romero-García, V., Pagneux, V. & Groby, J.-P. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Phys. Rev. B.https://doi.org/10.1103/PhysRevB.95.014205 (2017). es_ES
dc.description.references Merkel, A., Theocharis, G., Richoux, O., Romero-García, V. & Pagneux, V. Control of acoustic absorption in one-dimensional scattering by resonant scatterers. Appl. Phys. Lett. 107, 2441. https://doi.org/10.1063/1.4938121 (2015). es_ES
dc.description.references Jiménez, N., Romero-García, V., Pagneux, V. & Groby, J.-P. Rainbow-trapping absorbers: broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Sci. Rep. 7, 13595. https://doi.org/10.1038/s41598-017-13706-4 (2017). es_ES
dc.description.references Long, H. et al. Tunable and broadband asymmetric sound absorptions with coupling of acoustic bright and dark modes. J. Sound Vib. 479, 115371. https://doi.org/10.1016/j.jsv.2020.115371 (2020). es_ES
dc.description.references Romero-García, V. et al. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Sci. Rep. 6, 19519. https://doi.org/10.1038/srep19519 (2016). es_ES
dc.description.references Wang, X., Luo, X., Zhao, H. & Huang, Z. Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials. Appl. Phys. Lett. 112, 021901. https://doi.org/10.1063/1.5018180 (2018). es_ES
dc.description.references Long, H., Shao, C., Cheng, Y., Tao, J. & Liu, X. High absorption asymmetry enabled by a deep-subwavelength ventilated sound absorber. Appl. Phys. Lett. 118, 263502. https://doi.org/10.1063/5.0055157 (2021). es_ES
dc.description.references Long, H., Cheng, Y. & Liu, X. Asymmetric absorber with multiband and broadband for low-frequency sound. Appl. Phys. Lett. 6 (2017). es_ES
dc.description.references Long, H., Cheng, Y. & Liu, X. Reconfigurable sound anomalous absorptions in transparent waveguide with modularized multi-order helmholtz resonator. Sci. Rep. 8, 15678. https://doi.org/10.1038/s41598-018-34117-z (2018). es_ES
dc.description.references Guo, J., Zhang, X. & Fang, Y. Broadband forbidden transmission by multiple CPA-based detuned Helmholtz resonators. In ICSV26, 8 (Montréal, 2019). es_ES
dc.description.references Boulvert, J. et al. Perfect, broadband, and sub-wavelength absorption with asymmetric absorbers: Realization for duct acoustics with 3D printed porous resonators. J. Sound Vib. 523, 116687. https://doi.org/10.1016/j.jsv.2021.116687 (2022). es_ES
dc.description.references Gao, N., Qu, S., Li, J., Wang, J. & Chen, W. Harnessing post-buckling deformation to tune sound absorption in soft Helmholtz absorbers. Int. J. Mech. Sci. 208, 106695. https://doi.org/10.1016/j.ijmecsci.2021.106695 (2021). es_ES
dc.description.references Li, L.-J. et al. Broadband compact acoustic absorber with high-efficiency ventilation performance. Appl. Phys. Lett. 113, 103501. https://doi.org/10.1063/1.5038184 (2018). es_ES
dc.description.references Yang, M., Chen, S., Fu, C. & Sheng, P. Optimal sound-absorbing structures. Mater. Horizons 4, 673–680. https://doi.org/10.1039/C7MH00129K (2017). es_ES
dc.description.references Huang, S. et al. Compact broadband acoustic sink with coherently coupled weak resonances. Sci. Bull. 65, 373–379. https://doi.org/10.1016/j.scib.2019.11.008 (2020). es_ES
dc.description.references Nguyen, H. et al. Broadband acoustic silencer with ventilation based on slit-type Helmholtz resonators. Appl. Phys. Lett. 117, 134103. https://doi.org/10.1063/5.0024018 (2020). es_ES
dc.description.references Cervenka, M., Bednaík, M. & Groby, J.-P. Optimized reactive silencers composed of closely-spaced elongated side-branch resonators. J. Acoust. Soc. Am. 145, 2210–2220. https://doi.org/10.1121/1.5097167 (2019). es_ES
dc.description.references Huang, W., Schwan, L., Romero-García, V., Génevaux, J.-M. & Groby, J.-P. 3D-printed sound absorbing metafluid inspired by cereal straws. Sci. Rep. 9, 8496. https://doi.org/10.1038/s41598-019-44891-z (2019). es_ES
dc.description.references Kumar, S. & Lee, H. P. Recent advances in acoustic metamaterials for simultaneous sound attenuation and air ventilation performances. Curr. Comput. Aided Drug Des. 10, 686. https://doi.org/10.3390/cryst10080686 (2020). es_ES
dc.description.references Li, Y. & Assouar, B. M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl. Phys. Lett. 108, 063502. https://doi.org/10.1063/1.4941338 (2016). es_ES
dc.description.references Pagneux, V., Amir, N. & Kergomard, J. A study of wave propagation in varying cross-section waveguides by modal decomposition. Part I. Theory and validation. J. Acoust. Soc. Am. 100, 2034–2048. https://doi.org/10.1121/1.417913 (1996). es_ES
dc.description.references Bi, W., Pagneux, V., Lafarge, D. & Aurégan, Y. Modelling of sound propagation in a non-uniform lined duct using a multi-modal propagation method. J. Sound Vib. 289, 1091–1111. https://doi.org/10.1016/j.jsv.2005.03.021 (2006). es_ES
dc.description.references Boyd, J. P. Chebyshev and Fourier spectral methods (Courier Corporation, 2001). es_ES
dc.description.references Stinson, M. R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape. J. Acoust. Soc. Am. 89, 550–558. https://doi.org/10.1121/1.400379 (1991). es_ES
dc.description.references Nelder, J. A. & Mead, R. A simplex method for function minimization. Comput. J. 7, 308–313. https://doi.org/10.1093/comjnl/7.4.308 (1965). es_ES
dc.description.references Bonyadi, M. R. & Michalewicz, Z. Particle swarm optimization for single objective continuous space problems: a review. Evol. Comput. 25, 1–54. https://doi.org/10.1162/EVCO_r_00180 (2017). es_ES
dc.description.references Heris, S.M.K. Particle swarm optimization in MATLAB. URL: https://yarpiz.com/50/ypea102-particle-swarm-optimization. es_ES
dc.description.references Romero-García, V., Theocharis, G., Richoux, O. & Pagneux, V. Use of complex frequency plane to design broadband and sub-wavelength absorbers. J. Acoust. Soc. Am. 139, 3395–3403. https://doi.org/10.1121/1.4950708 (2016). es_ES
dc.description.references Groby, J.-P., Pommier, R. & Aurégan, Y. Use of slow sound to design perfect and broadband passive sound absorbing materials. J. Acoust. Soc. Am. 139, 1660–1671. https://doi.org/10.1121/1.4945101 (2016). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem