- -

Properties of nanocrystalline silicon probed by optomechanics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Properties of nanocrystalline silicon probed by optomechanics

Mostrar el registro completo del ítem

Navarro-Urrios, D.; Colombano, MF.; Maire, J.; Chávez-Ángel, E.; Arregui, G.; Capuj, NE.; Devos, A.... (2020). Properties of nanocrystalline silicon probed by optomechanics. Nanophotonics. 9(16):4819-4829. https://doi.org/10.1515/nanoph-2020-0489

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194501

Ficheros en el ítem

Metadatos del ítem

Título: Properties of nanocrystalline silicon probed by optomechanics
Autor: Navarro-Urrios, Daniel Colombano, Martín F. Maire, Jeremie Chávez-Ángel, Emigdio Arregui, Guillermo Capuj, Néstor E. Devos, Arnaud Griol Barres, Amadeu Bellieres, Laurent Christophe Martínez, Alejandro Grigoras, Kestutis Häkkinen, Teija Saarilahti, Jaakko Makkonen, Tapani Sotomayor-Torres, Clivia M. Ahopelto, Jouni
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Fecha difusión:
Resumen:
[EN] Nanocrystalline materials exhibit properties that can differ substantially from those of their single crystal counterparts. As such, they provide ways to enhance and optimize their functionality for devices and ...[+]
Palabras clave: Annealing , Cavity optomechanics , Nanocrystalline silicon
Derechos de uso: Reconocimiento (by)
Fuente:
Nanophotonics. (issn: 2192-8606 )
DOI: 10.1515/nanoph-2020-0489
Editorial:
Walter de Gruyter GmbH
Versión del editor: https://doi.org/10.1515/nanoph-2020-0489
Código del Proyecto:
info:eu-repo/grantAgreement/AEI//SEV-2017-0706/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094490-B-C21/ES/AVANZANDO EN CAVIDADES OPTOMECANICAS DE SILICO A TEMPERATURA AMBIENTE/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-101743-B-I00/ES/SURFACE AND INTERFACE RESHAPED PHONON PROPAGATION AND PHONON COUPLING TO PHOTONS/
info:eu-repo/grantAgreement/EC/H2020/713450/EU
info:eu-repo/grantAgreement/MINECO//RYC-2014-15392/ES/RYC-2014-15392/
Agradecimientos:
The following support is gratefully acknowledged: the European Commission project PHENOMEN (H2020-EU-FET Open GA no. 713450), the Spanish Severo Ochoa Excellence program (SEV-2017-0706), CMST and ECA: the Spanish MICINN ...[+]
Tipo: Artículo

References

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys., vol. 86, p. 1391, 2014. https://doi.org/10.1103/revmodphys.86.1391.

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett., vol. 6, p. 583, 2006. https://doi.org/10.1021/nl052134m.

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol., vol. 6, p. 726, 2011. https://doi.org/10.1038/nnano.2011.180. [+]
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys., vol. 86, p. 1391, 2014. https://doi.org/10.1103/revmodphys.86.1391.

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett., vol. 6, p. 583, 2006. https://doi.org/10.1021/nl052134m.

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol., vol. 6, p. 726, 2011. https://doi.org/10.1038/nnano.2011.180.

D. Navarro-Urrios, N. E. Capuj, M. F. Colombano, et al., “Nonlinear dynamics and chaos in an optomechanical beam,” Nat. Commun., vol. 8, 2017, Art no. 14965. https://doi.org/10.1038/ncomms14965.

M. F. Colombano, G. Arregui, N. E. Capuj, et al., “Synchronization of optomechanical nanobeams by mechanical interaction,” Phys. Rev. Lett., vol. 23, no. 1, p. 017402, 2019.

G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, “Collective dynamics in optomechanical arrays,” Phys. Rev. Lett., vol. 107, p. 043603, 2011. https://doi.org/10.1103/physrevlett.107.043603.

M. Davanço, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett., vol. 104, p. 41101, 2014. https://doi.org/10.1063/1.4858975.

K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics, vol. 10, p. 346, 2016. https://doi.org/10.1038/nphoton.2016.46.

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys., vol. 9, p. 712, 2013. https://doi.org/10.1038/nphys2748.

C. Xiong, W. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys., vol. 14, p. 095014, 2012.

M. J. Burek, J. D. Cohen, S. M. Meenehan, et al.., “Diamond optomechanical crystals,” Optica, vol. 3, p. 1404, 2016. https://doi.org/10.1364/optica.3.001404.

M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica, vol. 3, p. 963, 2016. https://doi.org/10.1364/optica.3.000963.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature, vol. 462, p. 78, 2009. https://doi.org/10.1038/nature08524.

D. Navarro-Urrios, J. Gomis-Bresco, S. El-Jallal, et al., “Dynamical back-action at 5.5 GHz in a corrugated optomechanical beam,” AIP Adv., vol. 4, 2014, Art no. 124601. https://doi.org/10.1063/1.4902171.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, et al.., “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature, vol. 478, p. 89, 2011. https://doi.org/10.1038/nature10461.

R. Riedinger, S. Hong, R. A. Norte, et al.., “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature, vol. 530, p. 313, 2016. https://doi.org/10.1038/nature16536.

G. Harbeke, “Growth and physical properties of LPCVD polycrystalline silicon films,” J. Electrochem. Soc., vol. 131, p. 675, 1984. https://doi.org/10.1149/1.2115672.

M. Ylönen, A. Torkkeli, and H. Kattelus, “In situ boron-doped LPCVD polysilicon with low tensile stress for MEMS applications,” Sens. Actuators A Phys., vol. 109, p. 79, 2003. https://doi.org/10.1016/j.sna.2003.09.017.

D. Navarro-Urrios, N. E. Capuj, J. Maire, et al., “Nanocrystalline silicon optomechanical cavities,” Opt. Express, vol. 26, no. 8, pp. 9829–9839, 2018. https://doi.org/10.1364/oe.26.009829.

D. Navarro-Urrios, N. E. Capuj, J. Gomis-Bresco, et al., “A self-stabilized coherent phonon source driven by optical forces,” Sci. Rep., vol. 5, 2015, Art no. 15733. https://doi.org/10.1038/srep15733.

G. G. Stoney and C. A. Parsons, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. Lond. Ser. A, Contain. Pap. Math. Phys. Character, vol. 82, p. 172, 1909. https://doi.org/10.1098/rspa.1909.0021.

G. C. A. M. Janssen, M. M. Abdalla, F. van Keulen, B. R. Pujada, and B. van Venrooy, “Celebrating the 100th anniversary of the Stoney equation for film stress: developments from polycrystalline steel strips to single crystal silicon wafers,” Thin Solid Films, vol. 517, p. 1858, 2009. https://doi.org/10.1016/j.tsf.2008.07.014.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 EV,” Phys. Rev. B, vol. 27, p. 985, 1983. https://doi.org/10.1103/physrevb.27.985.

E. Iwase, P.-C. Hui, D. Woolf, et al.., “Control of buckling in large micromembranes using engineered support structures,” J. Micromech. Microeng., vol. 22, p. 065028, 2012. https://doi.org/10.1088/0960-1317/22/6/065028.

I. Theodorakos, I. Zergioti, V. Vamvakas, D. Tsoukalas, and Y. S. Raptis, “Picosecond and nanosecond laser annealing and simulation of amorphous silicon thin films for solar cell applications,” J. Appl. Phys., vol. 115, p. 43108, 2014. https://doi.org/10.1063/1.4863402.

I. H. Campbell and P. M. Fauchet, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors,” Solid State Commun., vol. 58, p. 739, 1986. https://doi.org/10.1016/0038-1098(86)90513-2.

S. Veprek, F.-A. Sarott, and Z. Iqbal, “Effect of grain boundaries on the Raman spectra, optical absorption, and elastic light scattering in nanometer-sized crystalline silicon,” Phys. Rev. B, vol. 36, p. 3344, 1987. https://doi.org/10.1103/physrevb.36.3344.

H. Richter, Z. P. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Commun., vol. 39, p. 625, 1981. https://doi.org/10.1016/0038-1098(81)90337-9.

P. A. Mante, J. F. Robillard, and A. Devos, “Complete thin film mechanical characterization using picosecond ultrasonics and nanostructured transducers: experimental demonstration on SiO2,” Appl. Phys. Lett., vol. 93, p. 71909, 2008. https://doi.org/10.1063/1.2975171.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, et al., “A one-dimensional optomechanical crystal with a complete phononic band gap,” Nat. Commun., vol. 5, 2014, Art no. 4452. https://doi.org/10.1038/ncomms5452.

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys., vol. 99, p. 124304, 2006. https://doi.org/10.1063/1.2204829.

Y. Sun, D. Fang, and A. K. Soh, “Thermoelastic damping in micro-beam resonators,” Int. J. Solids Struct., vol. 43, p. 3213, 2006. https://doi.org/10.1016/j.ijsolstr.2005.08.011.

C. M. Zener and S. Siegel, “Elasticity and anelasticity of metals,” J. Phys. Colloid Chem., vol. 53, p. 1468, 1949. https://doi.org/10.1021/j150474a017.

V. T. Srikar and S. D. Senturia, “Thermoelastic damping in fine-grained polysilicon flexural beam resonators,” J. Microelectromech. Syst., vol. 11, p. 499, 2002. https://doi.org/10.1109/jmems.2002.802902.

S. S. Verbridge, D. F. Shapiro, H. G. Craighead, and J. M. Parpia, “Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators,” Nano Lett., vol. 7, p. 1728, 2007. https://doi.org/10.1021/nl070716t.

S. Kumar and M. Aman Haque, “Stress-dependent thermal relaxation effects in micro-mechanical resonators,” Acta Mech., vol. 212, p. 83, 2010. https://doi.org/10.1007/s00707-009-0244-6.

D. Macdonald and A. Cuevas, “Validity of simplified Shockley–Read–Hall statistics for modeling carrier lifetimes in crystalline silicon,” Phys. Rev. B, vol. 67, p. 75203, 2003. https://doi.org/10.1103/physrevb.67.075203.

T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express, vol. 14, p. 817, 2006. https://doi.org/10.1364/opex.14.000817.

H. C. Card, “The photoconductivity of polycrystalline semiconductors,” J. Appl. Phys., vol. 52, p. 3671, 1981. https://doi.org/10.1063/1.329104.

S. Uma, A. D. McConnell, M. Asheghi, K. Kurabayashi, and K. E. Goodson, “Temperature-dependent thermal conductivity of undoped polycrystalline silicon layers,” Int. J. Thermophys., vol. 22, p. 605, 2001.

H. Dong, B. Wen, and R. Melnik, “Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials,” Sci. Rep., vol. 4, p. 7037, 2014. https://doi.org/10.1038/srep07037.

B. Jugdersuren, B. T. Kearney, D. R. Queen, et al.., “Thermal conductivity of amorphous and nanocrystalline silicon films prepared by hot-wire chemical-vapor deposition,” Phys. Rev. B, vol. 96, p. 1, 2017. https://doi.org/10.1103/physrevb.96.014206.

M. Nomura, Y. Kage, J. Nakagawa, et al.., “Impeded thermal transport in Si multiscale Hierarchical architectures with phononic crystal nanostructures,” Phys. Rev. B, vol. 91, p. 205422, 2015. https://doi.org/10.1103/physrevb.91.205422.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem