Mostrar el registro sencillo del ítem
dc.contributor.author | Navarro-Urrios, Daniel | es_ES |
dc.contributor.author | Colombano, Martín F. | es_ES |
dc.contributor.author | Maire, Jeremie | es_ES |
dc.contributor.author | Chávez-Ángel, Emigdio | es_ES |
dc.contributor.author | Arregui, Guillermo | es_ES |
dc.contributor.author | Capuj, Néstor E. | es_ES |
dc.contributor.author | Devos, Arnaud | es_ES |
dc.contributor.author | Griol Barres, Amadeu | es_ES |
dc.contributor.author | Bellieres, Laurent Christophe | es_ES |
dc.contributor.author | Martínez, Alejandro | es_ES |
dc.contributor.author | Grigoras, Kestutis | es_ES |
dc.contributor.author | Häkkinen, Teija | es_ES |
dc.contributor.author | Saarilahti, Jaakko | es_ES |
dc.contributor.author | Makkonen, Tapani | es_ES |
dc.contributor.author | Sotomayor-Torres, Clivia M. | es_ES |
dc.contributor.author | Ahopelto, Jouni | es_ES |
dc.date.accessioned | 2023-06-22T18:02:48Z | |
dc.date.available | 2023-06-22T18:02:48Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.issn | 2192-8606 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/194501 | |
dc.description.abstract | [EN] Nanocrystalline materials exhibit properties that can differ substantially from those of their single crystal counterparts. As such, they provide ways to enhance and optimize their functionality for devices and applications. Here, we report on the optical, mechanical and thermal properties of nanocrystalline silicon probed by means of optomechanical nanobeams to extract information of the dynamics of optical absorption, mechanical losses, heat generation and dissipation. The optomechanical nanobeams are fabricated using nanocrystalline films prepared by annealing amorphous silicon layers at different temperatures. The resulting crystallite sizes and the stress in the films can be controlled by the annealing temperature and time and, consequently, the properties of the films can be tuned relatively freely, as demonstrated here by means of electron microscopy and Raman scattering. We show that the nanocrystallite size and the volume fraction of the grain boundaries play a key role in the dissipation rates through nonlinear optical and thermal processes. Promising optical (13,000) and mechanical (1700) quality factors were found in the optomechanical cavity realized in the nanocrystalline Si resulting from annealing at 950 degrees C. The enhanced absorption and recombination rates via the intragap states and the reduced thermal conductivity boost the potential to exploit these nonlinear effects in applications including Nanoelectromechanical systems (NEMS), phonon lasing and chaos-based devices. | es_ES |
dc.description.sponsorship | The following support is gratefully acknowledged: the European Commission project PHENOMEN (H2020-EU-FET Open GA no. 713450), the Spanish Severo Ochoa Excellence program (SEV-2017-0706), CMST and ECA: the Spanish MICINN project SIP (PGC2018-101743-B-I00), DNU and AM: the Spanish MICINN project PGC2018-094490-B-C22. DNU holds a Ramon y Cajal postdoctoral fellowship (RYC-2014-15392); MFC and GA hold a S. Ochoa and a M. S. Curie COFUND BIST postgraduate studentship, respectively. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Walter de Gruyter GmbH | es_ES |
dc.relation.ispartof | Nanophotonics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Annealing | es_ES |
dc.subject | Cavity optomechanics | es_ES |
dc.subject | Nanocrystalline silicon | es_ES |
dc.subject.classification | TEORÍA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Properties of nanocrystalline silicon probed by optomechanics | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1515/nanoph-2020-0489 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//SEV-2017-0706/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094490-B-C21/ES/AVANZANDO EN CAVIDADES OPTOMECANICAS DE SILICO A TEMPERATURA AMBIENTE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-101743-B-I00/ES/SURFACE AND INTERFACE RESHAPED PHONON PROPAGATION AND PHONON COUPLING TO PHOTONS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/713450/EU | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RYC-2014-15392/ES/RYC-2014-15392/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Navarro-Urrios, D.; Colombano, MF.; Maire, J.; Chávez-Ángel, E.; Arregui, G.; Capuj, NE.; Devos, A.... (2020). Properties of nanocrystalline silicon probed by optomechanics. Nanophotonics. 9(16):4819-4829. https://doi.org/10.1515/nanoph-2020-0489 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1515/nanoph-2020-0489 | es_ES |
dc.description.upvformatpinicio | 4819 | es_ES |
dc.description.upvformatpfin | 4829 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 16 | es_ES |
dc.relation.pasarela | S\425336 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | COMISION DE LAS COMUNIDADES EUROPEA | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys., vol. 86, p. 1391, 2014. https://doi.org/10.1103/revmodphys.86.1391. | es_ES |
dc.description.references | Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett., vol. 6, p. 583, 2006. https://doi.org/10.1021/nl052134m. | es_ES |
dc.description.references | M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol., vol. 6, p. 726, 2011. https://doi.org/10.1038/nnano.2011.180. | es_ES |
dc.description.references | D. Navarro-Urrios, N. E. Capuj, M. F. Colombano, et al., “Nonlinear dynamics and chaos in an optomechanical beam,” Nat. Commun., vol. 8, 2017, Art no. 14965. https://doi.org/10.1038/ncomms14965. | es_ES |
dc.description.references | M. F. Colombano, G. Arregui, N. E. Capuj, et al., “Synchronization of optomechanical nanobeams by mechanical interaction,” Phys. Rev. Lett., vol. 23, no. 1, p. 017402, 2019. | es_ES |
dc.description.references | G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, “Collective dynamics in optomechanical arrays,” Phys. Rev. Lett., vol. 107, p. 043603, 2011. https://doi.org/10.1103/physrevlett.107.043603. | es_ES |
dc.description.references | M. Davanço, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett., vol. 104, p. 41101, 2014. https://doi.org/10.1063/1.4858975. | es_ES |
dc.description.references | K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics, vol. 10, p. 346, 2016. https://doi.org/10.1038/nphoton.2016.46. | es_ES |
dc.description.references | J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys., vol. 9, p. 712, 2013. https://doi.org/10.1038/nphys2748. | es_ES |
dc.description.references | C. Xiong, W. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys., vol. 14, p. 095014, 2012. | es_ES |
dc.description.references | M. J. Burek, J. D. Cohen, S. M. Meenehan, et al.., “Diamond optomechanical crystals,” Optica, vol. 3, p. 1404, 2016. https://doi.org/10.1364/optica.3.001404. | es_ES |
dc.description.references | M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica, vol. 3, p. 963, 2016. https://doi.org/10.1364/optica.3.000963. | es_ES |
dc.description.references | M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature, vol. 462, p. 78, 2009. https://doi.org/10.1038/nature08524. | es_ES |
dc.description.references | D. Navarro-Urrios, J. Gomis-Bresco, S. El-Jallal, et al., “Dynamical back-action at 5.5 GHz in a corrugated optomechanical beam,” AIP Adv., vol. 4, 2014, Art no. 124601. https://doi.org/10.1063/1.4902171. | es_ES |
dc.description.references | J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, et al.., “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature, vol. 478, p. 89, 2011. https://doi.org/10.1038/nature10461. | es_ES |
dc.description.references | R. Riedinger, S. Hong, R. A. Norte, et al.., “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature, vol. 530, p. 313, 2016. https://doi.org/10.1038/nature16536. | es_ES |
dc.description.references | G. Harbeke, “Growth and physical properties of LPCVD polycrystalline silicon films,” J. Electrochem. Soc., vol. 131, p. 675, 1984. https://doi.org/10.1149/1.2115672. | es_ES |
dc.description.references | M. Ylönen, A. Torkkeli, and H. Kattelus, “In situ boron-doped LPCVD polysilicon with low tensile stress for MEMS applications,” Sens. Actuators A Phys., vol. 109, p. 79, 2003. https://doi.org/10.1016/j.sna.2003.09.017. | es_ES |
dc.description.references | D. Navarro-Urrios, N. E. Capuj, J. Maire, et al., “Nanocrystalline silicon optomechanical cavities,” Opt. Express, vol. 26, no. 8, pp. 9829–9839, 2018. https://doi.org/10.1364/oe.26.009829. | es_ES |
dc.description.references | D. Navarro-Urrios, N. E. Capuj, J. Gomis-Bresco, et al., “A self-stabilized coherent phonon source driven by optical forces,” Sci. Rep., vol. 5, 2015, Art no. 15733. https://doi.org/10.1038/srep15733. | es_ES |
dc.description.references | G. G. Stoney and C. A. Parsons, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. Lond. Ser. A, Contain. Pap. Math. Phys. Character, vol. 82, p. 172, 1909. https://doi.org/10.1098/rspa.1909.0021. | es_ES |
dc.description.references | G. C. A. M. Janssen, M. M. Abdalla, F. van Keulen, B. R. Pujada, and B. van Venrooy, “Celebrating the 100th anniversary of the Stoney equation for film stress: developments from polycrystalline steel strips to single crystal silicon wafers,” Thin Solid Films, vol. 517, p. 1858, 2009. https://doi.org/10.1016/j.tsf.2008.07.014. | es_ES |
dc.description.references | D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 EV,” Phys. Rev. B, vol. 27, p. 985, 1983. https://doi.org/10.1103/physrevb.27.985. | es_ES |
dc.description.references | E. Iwase, P.-C. Hui, D. Woolf, et al.., “Control of buckling in large micromembranes using engineered support structures,” J. Micromech. Microeng., vol. 22, p. 065028, 2012. https://doi.org/10.1088/0960-1317/22/6/065028. | es_ES |
dc.description.references | I. Theodorakos, I. Zergioti, V. Vamvakas, D. Tsoukalas, and Y. S. Raptis, “Picosecond and nanosecond laser annealing and simulation of amorphous silicon thin films for solar cell applications,” J. Appl. Phys., vol. 115, p. 43108, 2014. https://doi.org/10.1063/1.4863402. | es_ES |
dc.description.references | I. H. Campbell and P. M. Fauchet, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors,” Solid State Commun., vol. 58, p. 739, 1986. https://doi.org/10.1016/0038-1098(86)90513-2. | es_ES |
dc.description.references | S. Veprek, F.-A. Sarott, and Z. Iqbal, “Effect of grain boundaries on the Raman spectra, optical absorption, and elastic light scattering in nanometer-sized crystalline silicon,” Phys. Rev. B, vol. 36, p. 3344, 1987. https://doi.org/10.1103/physrevb.36.3344. | es_ES |
dc.description.references | H. Richter, Z. P. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Commun., vol. 39, p. 625, 1981. https://doi.org/10.1016/0038-1098(81)90337-9. | es_ES |
dc.description.references | P. A. Mante, J. F. Robillard, and A. Devos, “Complete thin film mechanical characterization using picosecond ultrasonics and nanostructured transducers: experimental demonstration on SiO2,” Appl. Phys. Lett., vol. 93, p. 71909, 2008. https://doi.org/10.1063/1.2975171. | es_ES |
dc.description.references | J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, et al., “A one-dimensional optomechanical crystal with a complete phononic band gap,” Nat. Commun., vol. 5, 2014, Art no. 4452. https://doi.org/10.1038/ncomms5452. | es_ES |
dc.description.references | S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys., vol. 99, p. 124304, 2006. https://doi.org/10.1063/1.2204829. | es_ES |
dc.description.references | Y. Sun, D. Fang, and A. K. Soh, “Thermoelastic damping in micro-beam resonators,” Int. J. Solids Struct., vol. 43, p. 3213, 2006. https://doi.org/10.1016/j.ijsolstr.2005.08.011. | es_ES |
dc.description.references | C. M. Zener and S. Siegel, “Elasticity and anelasticity of metals,” J. Phys. Colloid Chem., vol. 53, p. 1468, 1949. https://doi.org/10.1021/j150474a017. | es_ES |
dc.description.references | V. T. Srikar and S. D. Senturia, “Thermoelastic damping in fine-grained polysilicon flexural beam resonators,” J. Microelectromech. Syst., vol. 11, p. 499, 2002. https://doi.org/10.1109/jmems.2002.802902. | es_ES |
dc.description.references | S. S. Verbridge, D. F. Shapiro, H. G. Craighead, and J. M. Parpia, “Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators,” Nano Lett., vol. 7, p. 1728, 2007. https://doi.org/10.1021/nl070716t. | es_ES |
dc.description.references | S. Kumar and M. Aman Haque, “Stress-dependent thermal relaxation effects in micro-mechanical resonators,” Acta Mech., vol. 212, p. 83, 2010. https://doi.org/10.1007/s00707-009-0244-6. | es_ES |
dc.description.references | D. Macdonald and A. Cuevas, “Validity of simplified Shockley–Read–Hall statistics for modeling carrier lifetimes in crystalline silicon,” Phys. Rev. B, vol. 67, p. 75203, 2003. https://doi.org/10.1103/physrevb.67.075203. | es_ES |
dc.description.references | T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express, vol. 14, p. 817, 2006. https://doi.org/10.1364/opex.14.000817. | es_ES |
dc.description.references | H. C. Card, “The photoconductivity of polycrystalline semiconductors,” J. Appl. Phys., vol. 52, p. 3671, 1981. https://doi.org/10.1063/1.329104. | es_ES |
dc.description.references | S. Uma, A. D. McConnell, M. Asheghi, K. Kurabayashi, and K. E. Goodson, “Temperature-dependent thermal conductivity of undoped polycrystalline silicon layers,” Int. J. Thermophys., vol. 22, p. 605, 2001. | es_ES |
dc.description.references | H. Dong, B. Wen, and R. Melnik, “Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials,” Sci. Rep., vol. 4, p. 7037, 2014. https://doi.org/10.1038/srep07037. | es_ES |
dc.description.references | B. Jugdersuren, B. T. Kearney, D. R. Queen, et al.., “Thermal conductivity of amorphous and nanocrystalline silicon films prepared by hot-wire chemical-vapor deposition,” Phys. Rev. B, vol. 96, p. 1, 2017. https://doi.org/10.1103/physrevb.96.014206. | es_ES |
dc.description.references | M. Nomura, Y. Kage, J. Nakagawa, et al.., “Impeded thermal transport in Si multiscale Hierarchical architectures with phononic crystal nanostructures,” Phys. Rev. B, vol. 91, p. 205422, 2015. https://doi.org/10.1103/physrevb.91.205422. | es_ES |