- -

Properties of nanocrystalline silicon probed by optomechanics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Properties of nanocrystalline silicon probed by optomechanics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Navarro-Urrios, Daniel es_ES
dc.contributor.author Colombano, Martín F. es_ES
dc.contributor.author Maire, Jeremie es_ES
dc.contributor.author Chávez-Ángel, Emigdio es_ES
dc.contributor.author Arregui, Guillermo es_ES
dc.contributor.author Capuj, Néstor E. es_ES
dc.contributor.author Devos, Arnaud es_ES
dc.contributor.author Griol Barres, Amadeu es_ES
dc.contributor.author Bellieres, Laurent Christophe es_ES
dc.contributor.author Martínez, Alejandro es_ES
dc.contributor.author Grigoras, Kestutis es_ES
dc.contributor.author Häkkinen, Teija es_ES
dc.contributor.author Saarilahti, Jaakko es_ES
dc.contributor.author Makkonen, Tapani es_ES
dc.contributor.author Sotomayor-Torres, Clivia M. es_ES
dc.contributor.author Ahopelto, Jouni es_ES
dc.date.accessioned 2023-06-22T18:02:48Z
dc.date.available 2023-06-22T18:02:48Z
dc.date.issued 2020-11 es_ES
dc.identifier.issn 2192-8606 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194501
dc.description.abstract [EN] Nanocrystalline materials exhibit properties that can differ substantially from those of their single crystal counterparts. As such, they provide ways to enhance and optimize their functionality for devices and applications. Here, we report on the optical, mechanical and thermal properties of nanocrystalline silicon probed by means of optomechanical nanobeams to extract information of the dynamics of optical absorption, mechanical losses, heat generation and dissipation. The optomechanical nanobeams are fabricated using nanocrystalline films prepared by annealing amorphous silicon layers at different temperatures. The resulting crystallite sizes and the stress in the films can be controlled by the annealing temperature and time and, consequently, the properties of the films can be tuned relatively freely, as demonstrated here by means of electron microscopy and Raman scattering. We show that the nanocrystallite size and the volume fraction of the grain boundaries play a key role in the dissipation rates through nonlinear optical and thermal processes. Promising optical (13,000) and mechanical (1700) quality factors were found in the optomechanical cavity realized in the nanocrystalline Si resulting from annealing at 950 degrees C. The enhanced absorption and recombination rates via the intragap states and the reduced thermal conductivity boost the potential to exploit these nonlinear effects in applications including Nanoelectromechanical systems (NEMS), phonon lasing and chaos-based devices. es_ES
dc.description.sponsorship The following support is gratefully acknowledged: the European Commission project PHENOMEN (H2020-EU-FET Open GA no. 713450), the Spanish Severo Ochoa Excellence program (SEV-2017-0706), CMST and ECA: the Spanish MICINN project SIP (PGC2018-101743-B-I00), DNU and AM: the Spanish MICINN project PGC2018-094490-B-C22. DNU holds a Ramon y Cajal postdoctoral fellowship (RYC-2014-15392); MFC and GA hold a S. Ochoa and a M. S. Curie COFUND BIST postgraduate studentship, respectively. es_ES
dc.language Inglés es_ES
dc.publisher Walter de Gruyter GmbH es_ES
dc.relation.ispartof Nanophotonics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Annealing es_ES
dc.subject Cavity optomechanics es_ES
dc.subject Nanocrystalline silicon es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Properties of nanocrystalline silicon probed by optomechanics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1515/nanoph-2020-0489 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//SEV-2017-0706/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094490-B-C21/ES/AVANZANDO EN CAVIDADES OPTOMECANICAS DE SILICO A TEMPERATURA AMBIENTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-101743-B-I00/ES/SURFACE AND INTERFACE RESHAPED PHONON PROPAGATION AND PHONON COUPLING TO PHOTONS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/713450/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2014-15392/ES/RYC-2014-15392/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Navarro-Urrios, D.; Colombano, MF.; Maire, J.; Chávez-Ángel, E.; Arregui, G.; Capuj, NE.; Devos, A.... (2020). Properties of nanocrystalline silicon probed by optomechanics. Nanophotonics. 9(16):4819-4829. https://doi.org/10.1515/nanoph-2020-0489 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1515/nanoph-2020-0489 es_ES
dc.description.upvformatpinicio 4819 es_ES
dc.description.upvformatpfin 4829 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 16 es_ES
dc.relation.pasarela S\425336 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys., vol. 86, p. 1391, 2014. https://doi.org/10.1103/revmodphys.86.1391. es_ES
dc.description.references Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett., vol. 6, p. 583, 2006. https://doi.org/10.1021/nl052134m. es_ES
dc.description.references M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol., vol. 6, p. 726, 2011. https://doi.org/10.1038/nnano.2011.180. es_ES
dc.description.references D. Navarro-Urrios, N. E. Capuj, M. F. Colombano, et al., “Nonlinear dynamics and chaos in an optomechanical beam,” Nat. Commun., vol. 8, 2017, Art no. 14965. https://doi.org/10.1038/ncomms14965. es_ES
dc.description.references M. F. Colombano, G. Arregui, N. E. Capuj, et al., “Synchronization of optomechanical nanobeams by mechanical interaction,” Phys. Rev. Lett., vol. 23, no. 1, p. 017402, 2019. es_ES
dc.description.references G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, “Collective dynamics in optomechanical arrays,” Phys. Rev. Lett., vol. 107, p. 043603, 2011. https://doi.org/10.1103/physrevlett.107.043603. es_ES
dc.description.references M. Davanço, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett., vol. 104, p. 41101, 2014. https://doi.org/10.1063/1.4858975. es_ES
dc.description.references K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics, vol. 10, p. 346, 2016. https://doi.org/10.1038/nphoton.2016.46. es_ES
dc.description.references J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys., vol. 9, p. 712, 2013. https://doi.org/10.1038/nphys2748. es_ES
dc.description.references C. Xiong, W. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys., vol. 14, p. 095014, 2012. es_ES
dc.description.references M. J. Burek, J. D. Cohen, S. M. Meenehan, et al.., “Diamond optomechanical crystals,” Optica, vol. 3, p. 1404, 2016. https://doi.org/10.1364/optica.3.001404. es_ES
dc.description.references M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica, vol. 3, p. 963, 2016. https://doi.org/10.1364/optica.3.000963. es_ES
dc.description.references M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature, vol. 462, p. 78, 2009. https://doi.org/10.1038/nature08524. es_ES
dc.description.references D. Navarro-Urrios, J. Gomis-Bresco, S. El-Jallal, et al., “Dynamical back-action at 5.5 GHz in a corrugated optomechanical beam,” AIP Adv., vol. 4, 2014, Art no. 124601. https://doi.org/10.1063/1.4902171. es_ES
dc.description.references J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, et al.., “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature, vol. 478, p. 89, 2011. https://doi.org/10.1038/nature10461. es_ES
dc.description.references R. Riedinger, S. Hong, R. A. Norte, et al.., “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature, vol. 530, p. 313, 2016. https://doi.org/10.1038/nature16536. es_ES
dc.description.references G. Harbeke, “Growth and physical properties of LPCVD polycrystalline silicon films,” J. Electrochem. Soc., vol. 131, p. 675, 1984. https://doi.org/10.1149/1.2115672. es_ES
dc.description.references M. Ylönen, A. Torkkeli, and H. Kattelus, “In situ boron-doped LPCVD polysilicon with low tensile stress for MEMS applications,” Sens. Actuators A Phys., vol. 109, p. 79, 2003. https://doi.org/10.1016/j.sna.2003.09.017. es_ES
dc.description.references D. Navarro-Urrios, N. E. Capuj, J. Maire, et al., “Nanocrystalline silicon optomechanical cavities,” Opt. Express, vol. 26, no. 8, pp. 9829–9839, 2018. https://doi.org/10.1364/oe.26.009829. es_ES
dc.description.references D. Navarro-Urrios, N. E. Capuj, J. Gomis-Bresco, et al., “A self-stabilized coherent phonon source driven by optical forces,” Sci. Rep., vol. 5, 2015, Art no. 15733. https://doi.org/10.1038/srep15733. es_ES
dc.description.references G. G. Stoney and C. A. Parsons, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. Lond. Ser. A, Contain. Pap. Math. Phys. Character, vol. 82, p. 172, 1909. https://doi.org/10.1098/rspa.1909.0021. es_ES
dc.description.references G. C. A. M. Janssen, M. M. Abdalla, F. van Keulen, B. R. Pujada, and B. van Venrooy, “Celebrating the 100th anniversary of the Stoney equation for film stress: developments from polycrystalline steel strips to single crystal silicon wafers,” Thin Solid Films, vol. 517, p. 1858, 2009. https://doi.org/10.1016/j.tsf.2008.07.014. es_ES
dc.description.references D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 EV,” Phys. Rev. B, vol. 27, p. 985, 1983. https://doi.org/10.1103/physrevb.27.985. es_ES
dc.description.references E. Iwase, P.-C. Hui, D. Woolf, et al.., “Control of buckling in large micromembranes using engineered support structures,” J. Micromech. Microeng., vol. 22, p. 065028, 2012. https://doi.org/10.1088/0960-1317/22/6/065028. es_ES
dc.description.references I. Theodorakos, I. Zergioti, V. Vamvakas, D. Tsoukalas, and Y. S. Raptis, “Picosecond and nanosecond laser annealing and simulation of amorphous silicon thin films for solar cell applications,” J. Appl. Phys., vol. 115, p. 43108, 2014. https://doi.org/10.1063/1.4863402. es_ES
dc.description.references I. H. Campbell and P. M. Fauchet, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors,” Solid State Commun., vol. 58, p. 739, 1986. https://doi.org/10.1016/0038-1098(86)90513-2. es_ES
dc.description.references S. Veprek, F.-A. Sarott, and Z. Iqbal, “Effect of grain boundaries on the Raman spectra, optical absorption, and elastic light scattering in nanometer-sized crystalline silicon,” Phys. Rev. B, vol. 36, p. 3344, 1987. https://doi.org/10.1103/physrevb.36.3344. es_ES
dc.description.references H. Richter, Z. P. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Commun., vol. 39, p. 625, 1981. https://doi.org/10.1016/0038-1098(81)90337-9. es_ES
dc.description.references P. A. Mante, J. F. Robillard, and A. Devos, “Complete thin film mechanical characterization using picosecond ultrasonics and nanostructured transducers: experimental demonstration on SiO2,” Appl. Phys. Lett., vol. 93, p. 71909, 2008. https://doi.org/10.1063/1.2975171. es_ES
dc.description.references J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, et al., “A one-dimensional optomechanical crystal with a complete phononic band gap,” Nat. Commun., vol. 5, 2014, Art no. 4452. https://doi.org/10.1038/ncomms5452. es_ES
dc.description.references S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys., vol. 99, p. 124304, 2006. https://doi.org/10.1063/1.2204829. es_ES
dc.description.references Y. Sun, D. Fang, and A. K. Soh, “Thermoelastic damping in micro-beam resonators,” Int. J. Solids Struct., vol. 43, p. 3213, 2006. https://doi.org/10.1016/j.ijsolstr.2005.08.011. es_ES
dc.description.references C. M. Zener and S. Siegel, “Elasticity and anelasticity of metals,” J. Phys. Colloid Chem., vol. 53, p. 1468, 1949. https://doi.org/10.1021/j150474a017. es_ES
dc.description.references V. T. Srikar and S. D. Senturia, “Thermoelastic damping in fine-grained polysilicon flexural beam resonators,” J. Microelectromech. Syst., vol. 11, p. 499, 2002. https://doi.org/10.1109/jmems.2002.802902. es_ES
dc.description.references S. S. Verbridge, D. F. Shapiro, H. G. Craighead, and J. M. Parpia, “Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators,” Nano Lett., vol. 7, p. 1728, 2007. https://doi.org/10.1021/nl070716t. es_ES
dc.description.references S. Kumar and M. Aman Haque, “Stress-dependent thermal relaxation effects in micro-mechanical resonators,” Acta Mech., vol. 212, p. 83, 2010. https://doi.org/10.1007/s00707-009-0244-6. es_ES
dc.description.references D. Macdonald and A. Cuevas, “Validity of simplified Shockley–Read–Hall statistics for modeling carrier lifetimes in crystalline silicon,” Phys. Rev. B, vol. 67, p. 75203, 2003. https://doi.org/10.1103/physrevb.67.075203. es_ES
dc.description.references T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express, vol. 14, p. 817, 2006. https://doi.org/10.1364/opex.14.000817. es_ES
dc.description.references H. C. Card, “The photoconductivity of polycrystalline semiconductors,” J. Appl. Phys., vol. 52, p. 3671, 1981. https://doi.org/10.1063/1.329104. es_ES
dc.description.references S. Uma, A. D. McConnell, M. Asheghi, K. Kurabayashi, and K. E. Goodson, “Temperature-dependent thermal conductivity of undoped polycrystalline silicon layers,” Int. J. Thermophys., vol. 22, p. 605, 2001. es_ES
dc.description.references H. Dong, B. Wen, and R. Melnik, “Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials,” Sci. Rep., vol. 4, p. 7037, 2014. https://doi.org/10.1038/srep07037. es_ES
dc.description.references B. Jugdersuren, B. T. Kearney, D. R. Queen, et al.., “Thermal conductivity of amorphous and nanocrystalline silicon films prepared by hot-wire chemical-vapor deposition,” Phys. Rev. B, vol. 96, p. 1, 2017. https://doi.org/10.1103/physrevb.96.014206. es_ES
dc.description.references M. Nomura, Y. Kage, J. Nakagawa, et al.., “Impeded thermal transport in Si multiscale Hierarchical architectures with phononic crystal nanostructures,” Phys. Rev. B, vol. 91, p. 205422, 2015. https://doi.org/10.1103/physrevb.91.205422. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem