- -

Impact of GST thickness on GST-loaded silicon waveguides for optimal optical switching

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Impact of GST thickness on GST-loaded silicon waveguides for optimal optical switching

Mostrar el registro completo del ítem

Parra Gómez, J.; Navarro-Arenas, J.; Kovylina-Zabyako, M.; Sanchis Kilders, P. (2022). Impact of GST thickness on GST-loaded silicon waveguides for optimal optical switching. Scientific Reports. 12(1):1-9. https://doi.org/10.1038/s41598-022-13848-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194510

Ficheros en el ítem

Metadatos del ítem

Título: Impact of GST thickness on GST-loaded silicon waveguides for optimal optical switching
Autor: Parra Gómez, Jorge Navarro-Arenas, Juan Kovylina-Zabyako, Miroslavna Sanchis Kilders, Pablo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Fecha difusión:
Resumen:
[EN] Phase-change integrated photonics has emerged as a new platform for developing photonic integrated circuits by integrating phase-change materials like GeSbTe (GST) onto the silicon photonics platform. The thickness ...[+]
Palabras clave: GST , Phase-change materials , Optical switching , Silicon photonics
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-022-13848-0
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-022-13848-0
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111460GB-I00/ES/HACIA DISPOSITIVOS FOTONICOS NO VOLATILES/
info:eu-repo/grantAgreement/ //FPU17%2F04224//AYUDA CONTRATO PREDOCTORAL FPU-PARRA GOMEZ. PROYECTO: DISPOSITIVOS OPTOELECTRONICOS BASADOS EN LA INTEGRACION DE MATERIALES CON PRESTACIONES UNICAS EN LA TECNOLOGIA DE FOTONICA DE SILICIO/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F123//NANOFOTONICA AVANZADA SOBRE SILICIO (AVANTI)/
Agradecimientos:
This work is supported by grants PID2019-111460GB-I00, ICTS-2017-28-UPV-9F, and FPU17/04224 funded by MCIN/AEI/ 10.13039/501100011033, by "ERDF A way of making Europe" and "ESF Investing in your future". Funding from ...[+]
Tipo: Artículo

References

Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nat. Photonics 4, 518–526. https://doi.org/10.1038/nphoton.2010.179 (2010).

Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photonics 14, 273–284. https://doi.org/10.1038/s41566-019-0532-1 (2020).

Heck, M. J. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics 6, 93–107. https://doi.org/10.1515/nanoph-2015-0152 (2017). [+]
Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nat. Photonics 4, 518–526. https://doi.org/10.1038/nphoton.2010.179 (2010).

Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photonics 14, 273–284. https://doi.org/10.1038/s41566-019-0532-1 (2020).

Heck, M. J. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics 6, 93–107. https://doi.org/10.1515/nanoph-2015-0152 (2017).

Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat. Photonics 4, 535–544. https://doi.org/10.1038/nphoton.2010.185 (2010).

Soref, R. & Bennett, B. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129. https://doi.org/10.1109/JQE.1987.1073206 (1987).

Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47. https://doi.org/10.1038/s41563-018-0208-0 (2019).

He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s-1 and beyond. Nat. Photonics 13, 359–364. https://doi.org/10.1038/s41566-019-0378-6 (2019) (1807.10362.).

Romagnoli, M. et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392–414. https://doi.org/10.1038/s41578-018-0040-9 (2018).

You, J. et al. Hybrid/integrated silicon photonics based on 2D materials in optical communication nanosystems. Laser Photonics Rev. 14, 2000239. https://doi.org/10.1002/lpor.202000239 (2020).

Babicheva, V. E., Boltasseva, A. & Lavrinenko, A. V. Transparent conducting oxides for electro-optical plasmonic modulators. Nanophotonics 4, 165–185. https://doi.org/10.1515/nanoph-2015-0004 (2015).

Niu, X., Hu, X., Chu, S. & Gong, Q. Epsilon-near-zero photonics: a new platform for integrated devices. Adv. Opt. Mater. 6, 1701292. https://doi.org/10.1002/adom.201701292 (2018).

Wu, J., Xie, Z. T., Sha, Y., Fu, H. Y. & Li, Q. Epsilon-near-zero photonics: infinite potentials. Photonics Res. 9, 1616. https://doi.org/10.1364/PRJ.427246 (2021).

Cueff, S. et al. VO2 nanophotonics. APL Photonics 5, 110901. https://doi.org/10.1063/5.0028093 (2020).

Abdollahramezani, S. et al. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics 9, 1189–1241. https://doi.org/10.1515/nanoph-2020-0039 (2020).

Fang, Z., Chen, R., Zheng, J. & Majumdar, A. Non-volatile reconfigurable silicon photonics based on phase-change materials. IEEE J. Sel. Top. Quantum Electron. 28, 1–17. https://doi.org/10.1109/JSTQE.2021.3120713 (2022).

Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658. https://doi.org/10.1038/nmat2226 (2008).

Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photonics 11, 465–476. https://doi.org/10.1038/nphoton.2017.126 (2017).

Zhang, Y. et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun. 10, 4279. https://doi.org/10.1038/s41467-019-12196-4 (2019).

Redaelli, A., Pirovano, A., Benvenuti, A. & Lacaita, A. L. Threshold switching and phase transition numerical models for phase change memory simulations. J. Appl. Phys. 103, 111101. https://doi.org/10.1063/1.2931951 (2008).

Rios, C. et al. Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited]. Opt. Mater. Express 8, 2455. https://doi.org/10.1364/OME.8.002455 (2018).

Kato, K., Kuwahara, M., Kawashima, H., Tsuruoka, T. & Tsuda, H. Current-driven phase-change optical gate switch using indium-tin-oxide heater. Appl. Phys. Express 10, 072201. https://doi.org/10.7567/APEX.10.072201 (2017).

Taghinejad, H. et al. ITO-based microheaters for reversible multi-stage switching of phase-change materials: towards miniaturized beyond-binary reconfigurable integrated photonics. Opt. Express 29, 20449. https://doi.org/10.1364/OE.424676 (2021) (2003.04097.).

Loke, D. et al. Breaking the speed limits of phase-change memory. Science 336, 1566–1569. https://doi.org/10.1126/science.1221561 (2012).

Xiong, F., Liao, A. D., Estrada, D. & Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570. https://doi.org/10.1126/science.1201938 (2011).

Kim, I. et al. High performance PRAM cell scalable to sub-20nm technology with below 4F2 cell size, extendable to DRAM applications. In 2010 Symposium on VLSI Technology, 203–204, https://doi.org/10.1109/VLSIT.2010.5556228 (IEEE, 2010).

Tanaka, D. et al. Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide. Opt. Express 20, 10283. https://doi.org/10.1364/OE.20.010283 (2012).

Rudé, M. et al. Optical switching at 1.55 $$\mu$$m in silicon racetrack resonators using phase change materials. Appl. Phys. Lett. 103, 141119. https://doi.org/10.1063/1.4824714 (2013).

Yu, Z., Zheng, J., Xu, P., Zhang, W. & Wu, Y. Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon. IEEE Photonics Technol. Lett. 30, 250–253. https://doi.org/10.1109/LPT.2017.2783928 (2018).

Shadmani, A., Miri, M. & Mohammadi Pouyan, S. Ultra-wideband multi-level optical modulation in a Ge2Sb2Te5-based waveguide with low power consumption and small footprint.. Opt. Commun. 439, 53–60. https://doi.org/10.1016/j.optcom.2019.01.046 (2019).

Parra, J., Santome, A., Navarro-Arenas, J. & Sanchis, P. Fast volatile response in GST/Si waveguides for all-optical modulation. In 2021 IEEE 17th International Conference on Group IV Photonics (GFP), 1–2. https://doi.org/10.1109/GFP51802.2021.9673955 (IEEE, 2021).

Song, Y. & Xu, P. Design of ultra-low insertion loss active transverse electric-pass polarizer based Ge2Sb2Te5 on silicon waveguide. Opt. Commun. 426, 30–34. https://doi.org/10.1016/j.optcom.2018.05.034 (2018).

Rios, C., Hosseini, P., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. On-chip photonic memory elements employing phase-change materials. Adv. Mater. 26, 1372–1377. https://doi.org/10.1002/adma.201304476 (2014).

Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 9, 725–732. https://doi.org/10.1038/nphoton.2015.182 (2015).

Zhang, H. et al. Miniature multilevel optical memristive switch using phase change material. ACS Photonics 6, 2205–2212. https://doi.org/10.1021/acsphotonics.9b00819 (2019) (1905.03163.).

Li, X. et al. Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell. Optica 6, 1. https://doi.org/10.1364/OPTICA.6.000001 (2019).

Li, X. et al. Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing. Optica 7, 218. https://doi.org/10.1364/OPTICA.379228 (2020).

Feldmann, J. et al. Integrated 256 cell photonic phase-change memory with 512-bit capacity. IEEE J. Sel. Top. Quantum Electron. 26, 1–7. https://doi.org/10.1109/JSTQE.2019.2956871 (2020).

Stegmaier, M., Rios, C., Bhaskaran, H. & Pernice, W. H. P. Thermo-optical effect in phase-change nanophotonics. ACS Photonics 3, 828–835. https://doi.org/10.1021/acsphotonics.6b00032 (2016).

von Keitz, J. et al. Reconfigurable nanophotonic cavities with nonvolatile response. ACS Photonics 5, 4644–4649. https://doi.org/10.1021/acsphotonics.8b01127 (2018).

Zheng, J. et al. GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Opt. Mater. Express 8, 1551. https://doi.org/10.1364/OME.8.001551 (2018).

Stegmaier, M., Ríos, C., Bhaskaran, H., Wright, C. D. & Pernice, W. H. P. Nonvolatile all-optical 1 2 switch for chipscale photonic networks. Adv. Opt. Mater. 5, 1600346. https://doi.org/10.1002/adom.201600346 (2017).

Xu, P., Zheng, J., Doylend, J. K. & Majumdar, A. Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photonics 6, 553–557. https://doi.org/10.1021/acsphotonics.8b01628 (2019) (1811.08490.).

Wu, C. et al. Low-loss integrated photonic switch using subwavelength patterned phase change material. ACS Photonics 6, 87–92. https://doi.org/10.1021/acsphotonics.8b01516 (2019).

Hu, H. et al. Contra-directional switching enabled by Si-GST grating. Opt. Express 28, 1574. https://doi.org/10.1364/OE.381502 (2020).

Zhang, C. et al. Wavelength-selective 2 x2 optical switch based on a Ge2Sb2Te5-assisted microring. Photonics Res. 8, 1171. https://doi.org/10.1364/PRJ.393513 (2020).

Zheng, J. et al. Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater. Adv. Mater. 32, 2001218. https://doi.org/10.1002/adma.202001218 (2020).

Li, Y. et al. Design of an electric-driven nonvolatile low-energy-consumption phase change optical switch. Nanotechnology 32, 405201. https://doi.org/10.1088/1361-6528/ac0ead (2021).

Cheng, Z., Ríos, C., Pernice, W. H. P., Wright, C. D. & Bhaskaran, H. On-chip photonic synapse. Sci. Adv. 3, https://doi.org/10.1126/sciadv.1700160 (2017).

Feldmann, J. et al. Calculating with light using a chip-scale all-optical abacus. Nat. Commun. 8, 1256. https://doi.org/10.1038/s41467-017-01506-3 (2017).

Cheng, Z. et al. Device-level photonic memories and logic applications using phase-change materials. Adv. Mater. 30, 1802435. https://doi.org/10.1002/adma.201802435 (2018).

Ríos, C. et al. In-memory computing on a photonic platform. Sci. Adv. 5, eaau5759. https://doi.org/10.1126/sciadv.aau5759 (2019).

Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214. https://doi.org/10.1038/s41586-019-1157-8 (2019).

Brückerhoff-Plückelmann, F., Feldmann, J., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. Chalcogenide phase-change devices for neuromorphic photonic computing. J. Appl. Phys. 129, 151103. https://doi.org/10.1063/5.0042549 (2021).

Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58. https://doi.org/10.1038/s41586-020-03070-1 (2021).

Parra, J., Olivares, I., Brimont, A. & Sanchis, P. Toward nonvolatile switching in silicon photonic devices. Laser Photonics Rev. 15, 2000501. https://doi.org/10.1002/lpor.202000501 (2021).

Yariv, A. & Yeh, P. Optical waves in crystals: propagation and control of laser radiation (Wiley, London, 1984).

Synopsys. FemSIM RSoft.

Synopsys. FullWAVE RSoft.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem