Mostrar el registro sencillo del ítem
dc.contributor.author | Parra Gómez, Jorge | es_ES |
dc.contributor.author | Navarro-Arenas, Juan | es_ES |
dc.contributor.author | Kovylina-Zabyako, Miroslavna | es_ES |
dc.contributor.author | Sanchis Kilders, Pablo | es_ES |
dc.date.accessioned | 2023-06-23T18:01:58Z | |
dc.date.available | 2023-06-23T18:01:58Z | |
dc.date.issued | 2022-06-13 | es_ES |
dc.identifier.issn | 2045-2322 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/194510 | |
dc.description.abstract | [EN] Phase-change integrated photonics has emerged as a new platform for developing photonic integrated circuits by integrating phase-change materials like GeSbTe (GST) onto the silicon photonics platform. The thickness of the GST patch that is usually placed on top of the waveguide is crucial for ensuring high optical performance. In this work, we investigate the impact of the GST thickness in terms of optical performance through numerical simulation and experiment. We show that higher-order modes can be excited in a GST-loaded silicon waveguide with relatively thin GST thicknesses (<100 nm), resulting in a dramatic reduction in the extinction ratio. Our results would be useful for designing high-performance GST/Si-based photonic devices such as non-volatile memories that could find utility in many emerging applications. | es_ES |
dc.description.sponsorship | This work is supported by grants PID2019-111460GB-I00, ICTS-2017-28-UPV-9F, and FPU17/04224 funded by MCIN/AEI/ 10.13039/501100011033, by "ERDF A way of making Europe" and "ESF Investing in your future". Funding from Generalitat Valenciana (PROMETEO/2019/123). Funding for open access charge: Universitat Politecnica de Valencia. The authors would like to thank Helen Urgelles for her help with the experimental measurements. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Scientific Reports | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | GST | es_ES |
dc.subject | Phase-change materials | es_ES |
dc.subject | Optical switching | es_ES |
dc.subject | Silicon photonics | es_ES |
dc.subject.classification | TEORÍA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Impact of GST thickness on GST-loaded silicon waveguides for optimal optical switching | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/s41598-022-13848-0 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111460GB-I00/ES/HACIA DISPOSITIVOS FOTONICOS NO VOLATILES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ //FPU17%2F04224//AYUDA CONTRATO PREDOCTORAL FPU-PARRA GOMEZ. PROYECTO: DISPOSITIVOS OPTOELECTRONICOS BASADOS EN LA INTEGRACION DE MATERIALES CON PRESTACIONES UNICAS EN LA TECNOLOGIA DE FOTONICA DE SILICIO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F123//NANOFOTONICA AVANZADA SOBRE SILICIO (AVANTI)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Parra Gómez, J.; Navarro-Arenas, J.; Kovylina-Zabyako, M.; Sanchis Kilders, P. (2022). Impact of GST thickness on GST-loaded silicon waveguides for optimal optical switching. Scientific Reports. 12(1):1-9. https://doi.org/10.1038/s41598-022-13848-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1038/s41598-022-13848-0 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 35697925 | es_ES |
dc.identifier.pmcid | PMC9192748 | es_ES |
dc.relation.pasarela | S\467181 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | MINISTERIO DE CIENCIA INNOVACION Y UNIVERSIDADES | es_ES |
dc.description.references | Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nat. Photonics 4, 518–526. https://doi.org/10.1038/nphoton.2010.179 (2010). | es_ES |
dc.description.references | Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photonics 14, 273–284. https://doi.org/10.1038/s41566-019-0532-1 (2020). | es_ES |
dc.description.references | Heck, M. J. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics 6, 93–107. https://doi.org/10.1515/nanoph-2015-0152 (2017). | es_ES |
dc.description.references | Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat. Photonics 4, 535–544. https://doi.org/10.1038/nphoton.2010.185 (2010). | es_ES |
dc.description.references | Soref, R. & Bennett, B. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129. https://doi.org/10.1109/JQE.1987.1073206 (1987). | es_ES |
dc.description.references | Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47. https://doi.org/10.1038/s41563-018-0208-0 (2019). | es_ES |
dc.description.references | He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s-1 and beyond. Nat. Photonics 13, 359–364. https://doi.org/10.1038/s41566-019-0378-6 (2019) (1807.10362.). | es_ES |
dc.description.references | Romagnoli, M. et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392–414. https://doi.org/10.1038/s41578-018-0040-9 (2018). | es_ES |
dc.description.references | You, J. et al. Hybrid/integrated silicon photonics based on 2D materials in optical communication nanosystems. Laser Photonics Rev. 14, 2000239. https://doi.org/10.1002/lpor.202000239 (2020). | es_ES |
dc.description.references | Babicheva, V. E., Boltasseva, A. & Lavrinenko, A. V. Transparent conducting oxides for electro-optical plasmonic modulators. Nanophotonics 4, 165–185. https://doi.org/10.1515/nanoph-2015-0004 (2015). | es_ES |
dc.description.references | Niu, X., Hu, X., Chu, S. & Gong, Q. Epsilon-near-zero photonics: a new platform for integrated devices. Adv. Opt. Mater. 6, 1701292. https://doi.org/10.1002/adom.201701292 (2018). | es_ES |
dc.description.references | Wu, J., Xie, Z. T., Sha, Y., Fu, H. Y. & Li, Q. Epsilon-near-zero photonics: infinite potentials. Photonics Res. 9, 1616. https://doi.org/10.1364/PRJ.427246 (2021). | es_ES |
dc.description.references | Cueff, S. et al. VO2 nanophotonics. APL Photonics 5, 110901. https://doi.org/10.1063/5.0028093 (2020). | es_ES |
dc.description.references | Abdollahramezani, S. et al. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics 9, 1189–1241. https://doi.org/10.1515/nanoph-2020-0039 (2020). | es_ES |
dc.description.references | Fang, Z., Chen, R., Zheng, J. & Majumdar, A. Non-volatile reconfigurable silicon photonics based on phase-change materials. IEEE J. Sel. Top. Quantum Electron. 28, 1–17. https://doi.org/10.1109/JSTQE.2021.3120713 (2022). | es_ES |
dc.description.references | Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658. https://doi.org/10.1038/nmat2226 (2008). | es_ES |
dc.description.references | Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photonics 11, 465–476. https://doi.org/10.1038/nphoton.2017.126 (2017). | es_ES |
dc.description.references | Zhang, Y. et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun. 10, 4279. https://doi.org/10.1038/s41467-019-12196-4 (2019). | es_ES |
dc.description.references | Redaelli, A., Pirovano, A., Benvenuti, A. & Lacaita, A. L. Threshold switching and phase transition numerical models for phase change memory simulations. J. Appl. Phys. 103, 111101. https://doi.org/10.1063/1.2931951 (2008). | es_ES |
dc.description.references | Rios, C. et al. Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited]. Opt. Mater. Express 8, 2455. https://doi.org/10.1364/OME.8.002455 (2018). | es_ES |
dc.description.references | Kato, K., Kuwahara, M., Kawashima, H., Tsuruoka, T. & Tsuda, H. Current-driven phase-change optical gate switch using indium-tin-oxide heater. Appl. Phys. Express 10, 072201. https://doi.org/10.7567/APEX.10.072201 (2017). | es_ES |
dc.description.references | Taghinejad, H. et al. ITO-based microheaters for reversible multi-stage switching of phase-change materials: towards miniaturized beyond-binary reconfigurable integrated photonics. Opt. Express 29, 20449. https://doi.org/10.1364/OE.424676 (2021) (2003.04097.). | es_ES |
dc.description.references | Loke, D. et al. Breaking the speed limits of phase-change memory. Science 336, 1566–1569. https://doi.org/10.1126/science.1221561 (2012). | es_ES |
dc.description.references | Xiong, F., Liao, A. D., Estrada, D. & Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570. https://doi.org/10.1126/science.1201938 (2011). | es_ES |
dc.description.references | Kim, I. et al. High performance PRAM cell scalable to sub-20nm technology with below 4F2 cell size, extendable to DRAM applications. In 2010 Symposium on VLSI Technology, 203–204, https://doi.org/10.1109/VLSIT.2010.5556228 (IEEE, 2010). | es_ES |
dc.description.references | Tanaka, D. et al. Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide. Opt. Express 20, 10283. https://doi.org/10.1364/OE.20.010283 (2012). | es_ES |
dc.description.references | Rudé, M. et al. Optical switching at 1.55 $$\mu$$m in silicon racetrack resonators using phase change materials. Appl. Phys. Lett. 103, 141119. https://doi.org/10.1063/1.4824714 (2013). | es_ES |
dc.description.references | Yu, Z., Zheng, J., Xu, P., Zhang, W. & Wu, Y. Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon. IEEE Photonics Technol. Lett. 30, 250–253. https://doi.org/10.1109/LPT.2017.2783928 (2018). | es_ES |
dc.description.references | Shadmani, A., Miri, M. & Mohammadi Pouyan, S. Ultra-wideband multi-level optical modulation in a Ge2Sb2Te5-based waveguide with low power consumption and small footprint.. Opt. Commun. 439, 53–60. https://doi.org/10.1016/j.optcom.2019.01.046 (2019). | es_ES |
dc.description.references | Parra, J., Santome, A., Navarro-Arenas, J. & Sanchis, P. Fast volatile response in GST/Si waveguides for all-optical modulation. In 2021 IEEE 17th International Conference on Group IV Photonics (GFP), 1–2. https://doi.org/10.1109/GFP51802.2021.9673955 (IEEE, 2021). | es_ES |
dc.description.references | Song, Y. & Xu, P. Design of ultra-low insertion loss active transverse electric-pass polarizer based Ge2Sb2Te5 on silicon waveguide. Opt. Commun. 426, 30–34. https://doi.org/10.1016/j.optcom.2018.05.034 (2018). | es_ES |
dc.description.references | Rios, C., Hosseini, P., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. On-chip photonic memory elements employing phase-change materials. Adv. Mater. 26, 1372–1377. https://doi.org/10.1002/adma.201304476 (2014). | es_ES |
dc.description.references | Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 9, 725–732. https://doi.org/10.1038/nphoton.2015.182 (2015). | es_ES |
dc.description.references | Zhang, H. et al. Miniature multilevel optical memristive switch using phase change material. ACS Photonics 6, 2205–2212. https://doi.org/10.1021/acsphotonics.9b00819 (2019) (1905.03163.). | es_ES |
dc.description.references | Li, X. et al. Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell. Optica 6, 1. https://doi.org/10.1364/OPTICA.6.000001 (2019). | es_ES |
dc.description.references | Li, X. et al. Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing. Optica 7, 218. https://doi.org/10.1364/OPTICA.379228 (2020). | es_ES |
dc.description.references | Feldmann, J. et al. Integrated 256 cell photonic phase-change memory with 512-bit capacity. IEEE J. Sel. Top. Quantum Electron. 26, 1–7. https://doi.org/10.1109/JSTQE.2019.2956871 (2020). | es_ES |
dc.description.references | Stegmaier, M., Rios, C., Bhaskaran, H. & Pernice, W. H. P. Thermo-optical effect in phase-change nanophotonics. ACS Photonics 3, 828–835. https://doi.org/10.1021/acsphotonics.6b00032 (2016). | es_ES |
dc.description.references | von Keitz, J. et al. Reconfigurable nanophotonic cavities with nonvolatile response. ACS Photonics 5, 4644–4649. https://doi.org/10.1021/acsphotonics.8b01127 (2018). | es_ES |
dc.description.references | Zheng, J. et al. GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Opt. Mater. Express 8, 1551. https://doi.org/10.1364/OME.8.001551 (2018). | es_ES |
dc.description.references | Stegmaier, M., Ríos, C., Bhaskaran, H., Wright, C. D. & Pernice, W. H. P. Nonvolatile all-optical 1 2 switch for chipscale photonic networks. Adv. Opt. Mater. 5, 1600346. https://doi.org/10.1002/adom.201600346 (2017). | es_ES |
dc.description.references | Xu, P., Zheng, J., Doylend, J. K. & Majumdar, A. Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photonics 6, 553–557. https://doi.org/10.1021/acsphotonics.8b01628 (2019) (1811.08490.). | es_ES |
dc.description.references | Wu, C. et al. Low-loss integrated photonic switch using subwavelength patterned phase change material. ACS Photonics 6, 87–92. https://doi.org/10.1021/acsphotonics.8b01516 (2019). | es_ES |
dc.description.references | Hu, H. et al. Contra-directional switching enabled by Si-GST grating. Opt. Express 28, 1574. https://doi.org/10.1364/OE.381502 (2020). | es_ES |
dc.description.references | Zhang, C. et al. Wavelength-selective 2 x2 optical switch based on a Ge2Sb2Te5-assisted microring. Photonics Res. 8, 1171. https://doi.org/10.1364/PRJ.393513 (2020). | es_ES |
dc.description.references | Zheng, J. et al. Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater. Adv. Mater. 32, 2001218. https://doi.org/10.1002/adma.202001218 (2020). | es_ES |
dc.description.references | Li, Y. et al. Design of an electric-driven nonvolatile low-energy-consumption phase change optical switch. Nanotechnology 32, 405201. https://doi.org/10.1088/1361-6528/ac0ead (2021). | es_ES |
dc.description.references | Cheng, Z., Ríos, C., Pernice, W. H. P., Wright, C. D. & Bhaskaran, H. On-chip photonic synapse. Sci. Adv. 3, https://doi.org/10.1126/sciadv.1700160 (2017). | es_ES |
dc.description.references | Feldmann, J. et al. Calculating with light using a chip-scale all-optical abacus. Nat. Commun. 8, 1256. https://doi.org/10.1038/s41467-017-01506-3 (2017). | es_ES |
dc.description.references | Cheng, Z. et al. Device-level photonic memories and logic applications using phase-change materials. Adv. Mater. 30, 1802435. https://doi.org/10.1002/adma.201802435 (2018). | es_ES |
dc.description.references | Ríos, C. et al. In-memory computing on a photonic platform. Sci. Adv. 5, eaau5759. https://doi.org/10.1126/sciadv.aau5759 (2019). | es_ES |
dc.description.references | Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214. https://doi.org/10.1038/s41586-019-1157-8 (2019). | es_ES |
dc.description.references | Brückerhoff-Plückelmann, F., Feldmann, J., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. Chalcogenide phase-change devices for neuromorphic photonic computing. J. Appl. Phys. 129, 151103. https://doi.org/10.1063/5.0042549 (2021). | es_ES |
dc.description.references | Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58. https://doi.org/10.1038/s41586-020-03070-1 (2021). | es_ES |
dc.description.references | Parra, J., Olivares, I., Brimont, A. & Sanchis, P. Toward nonvolatile switching in silicon photonic devices. Laser Photonics Rev. 15, 2000501. https://doi.org/10.1002/lpor.202000501 (2021). | es_ES |
dc.description.references | Yariv, A. & Yeh, P. Optical waves in crystals: propagation and control of laser radiation (Wiley, London, 1984). | es_ES |
dc.description.references | Synopsys. FemSIM RSoft. | es_ES |
dc.description.references | Synopsys. FullWAVE RSoft. | es_ES |
upv.costeAPC | 2500 | es_ES |