- -

Direct assessment of confinement effect in zeolite-encapsulated subnanometric metal species

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Direct assessment of confinement effect in zeolite-encapsulated subnanometric metal species

Mostrar el registro completo del ítem

Liu, L.; López-Haro, M.; Perez-Omil, JA.; Boronat Zaragoza, M.; Calvino, JJ.; Corma Canós, A. (2022). Direct assessment of confinement effect in zeolite-encapsulated subnanometric metal species. Nature Communications. 13(1):1-10. https://doi.org/10.1038/s41467-022-28356-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194562

Ficheros en el ítem

Metadatos del ítem

Título: Direct assessment of confinement effect in zeolite-encapsulated subnanometric metal species
Autor: Liu, Lichen López-Haro, Miguel Perez-Omil, Jose Antonio Boronat Zaragoza, Mercedes Calvino, Jose Juan Corma Canós, Avelino
Fecha difusión:
Resumen:
[EN] Subnanometric metal species confined inside the microporous channels/cavities of zeolites have been demonstrated as stable and efficient catalysts. The confinement interaction between the metal species and zeolite ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Nature Communications. (issn: 2041-1723 )
DOI: 10.1038/s41467-022-28356-y
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41467-022-28356-y
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-87579-R/ES/FASES 2D ULTRAFINAS SOBRE OXIDOS CON MORFOLOGIA CONTROLADA: PLATAFORMA DE NANOCATALIZADORES MULTICOMPONENTE CON APLICACIONES EN PROTECCION DEL MEDIO AMBIENTE/
info:eu-repo/grantAgreement/MCIU//SEV-2016-0683/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-110018GA-I00/ES/HACIA CATALIZADORES HOMO Y HETERO DIATOMICOS DE AU-PD SOPORTADOS SOBRE OXIDOS: SINTEIS, CATACTERIZACION ATOMICA Y ACTIVIDAD EN LA REACCION DE OXIDACION SELECTIVA DE ALCOHOLES/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112590GB-C21/ES/MATERIALES HIBRIDOS DE BAJA DIMENSIONALIDAD CON MORFOLOGIA, ESTRUCTURACION Y REACTIVIDAD CONTROLABLE PARA LLEVAR A CABO PROCESOS CATALITICOS Y NANOTECNOLOGICOS /
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113006RB-I00/ES/METALES NOBLES ULTRADISPERSOS SOBRE CAPAS ULTRAFINAS DE OXIDOS MODELO BASADOS EN CERIO: APLICACIONES EN PROCESOS DE CATALISIS MEDIOAMBIENTAL/
Agradecimientos:
This work has been supported by the Spanish government through the "Severo Ochoa Program" (SEV-2016-0683) (A.C. and M.B.) and PID2020-112590GB-C21 (M.B.). High-resolution STEM measurements were performed at DME-UCA node ...[+]
Tipo: Artículo

References

Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020).

Fu, Q., Yang, F. & Bao, X. Interface-confined oxide nanostructures for catalytic oxidation reactions. Acc. Chem. Res. 46, 1692–1701 (2013).

Gounder, R. & Iglesia, E. The roles of entropy and enthalpy in stabilizing ion-pairs at transition states in zeolite acid catalysis. Acc. Chem. Res. 45, 229–238 (2012). [+]
Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020).

Fu, Q., Yang, F. & Bao, X. Interface-confined oxide nanostructures for catalytic oxidation reactions. Acc. Chem. Res. 46, 1692–1701 (2013).

Gounder, R. & Iglesia, E. The roles of entropy and enthalpy in stabilizing ion-pairs at transition states in zeolite acid catalysis. Acc. Chem. Res. 45, 229–238 (2012).

Sastre, G. & Corma, A. The confinement effect in zeolites. J. Mol. Catal. A: Chem. 305, 3–7 (2009).

Boronat, M. & Corma, A. What is measured when measuring acidity in zeolites with probe molecules? ACS Catal. 9, 1539–1548 (2019).

Li, C. Chiral synthesis on catalysts immobilized in microporous and mesoporous materials. Catal. Rev. 46, 419–492 (2011).

Thomas, J. M. & Raja, R. Exploiting nanospace for asymmetric catalysis: confinement of immobilized, single-site chiral catalysts enhances enantioselectivity. Acc. Chem. Res. 41, 708–720 (2008).

Cho, H. J. et al. Molecular-level proximity of metal and acid sites in zeolite-encapsulated Pt nanoparticles for selective multistep tandem catalysis. ACS Catal. 10, 3340–3348 (2019).

Wang, N., Sun, Q. & Yu, J. Ultrasmall metal nanoparticles confined within crystalline nanoporous materials: a fascinating class of nanocatalysts. Adv. Mater. 31, e1803966 (2019).

Wu, S. M., Yang, X. Y. & Janiak, C. Confinement effects in zeolite-confined noble metals. Angew. Chem. Int. Ed. 58, 12340–12354 (2019).

Wang, L., Xu, S., He, S. & Xiao, F.-S. Rational construction of metal nanoparticles fixed in zeolite crystals as highly efficient heterogeneous catalysts. Nano Today 20, 74–83 (2018).

Liu, L. & Corma, A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat. Rev. Mater. 6, 244–263 (2020).

Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017).

Liu, L. et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 18, 866–873 (2019).

Aydin, C. et al. Tracking iridium atoms with electron microscopy: first steps of metal nanocluster formation in one-dimensional zeolite channels. Nano Lett. 11, 5537–5541 (2011).

Warner, J. H., Young, N. P., Kirkland, A. I. & Briggs, G. A. Resolving strain in carbon nanotubes at the atomic level. Nat. Mater. 10, 958–962 (2011).

Mukherjee, D., Gamler, J. T. L., Skrabalak, S. E. & Unocic, R. R. Lattice strain measurement of Core@Shell electrocatalysts with 4D scanning transmission electron microscopy nanobeam electron diffraction. ACS Catal. 10, 5529–5541 (2020).

Oh, M. H. et al. Design and synthesis of multigrain nanocrystals via geometric misfit strain. Nature 577, 359–363 (2020).

Lopez-Haro, M. et al. Strain field in ultrasmall gold nanoparticles supported on cerium-based mixed oxides. key influence of the support redox state. Langmuir 32, 4313–4322 (2016).

You, B. et al. Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 31, e1807001 (2019).

Yang, S., Liu, F., Wu, C. & Yang, S. Tuning surface properties of low dimensional materials via strain engineering. Small 12, 4028–4047 (2016).

Wu, J. et al. Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. Chem. Soc. Rev. 41, 8066–8074 (2012).

Ortalan, V., Uzun, A., Gates, B. C. & Browning, N. D. Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite. Nat. Nanotechnol. 5, 506–510 (2010).

Juneau, M. et al. Characterization of metal‐zeolite composite catalysts: determining the environment of the active phase. ChemCatChem 12, 1826–1852 (2020).

Lazic, I., Bosch, E. G. T. & Lazar, S. Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy 160, 265–280 (2016).

Leonowicz, M. E., Lawton, J. A., Lawton, S. L. & Rubin, M. K. MCM-22: a molecular sieve with two independent multidimensional channel systems. Science 264, 1910–1913 (1994).

Hou, D., Grajciar, L., Nachtigall, P. & Heard, C. J. Origin of the unusual stability of zeolite-encapsulated sub-nanometer platinum. ACS Catal. 10, 11057–11068 (2020).

Liu, L. et al. Regioselective generation of single-site iridium atoms and their evolution into stabilized subnanometric iridium clusters in MWW zeolite. Angew. Chem. Int. Ed. 59, 15695–15702 (2020).

Márquez, F., García, H., Palomares, E., Fernández, L. & Corma, A. Spectroscopic evidence in support of the molecular orbital confinement concept: case of anthracene incorporated in zeolites. J. Am. Chem. Soc. 122, 6520–6521 (2000).

Gallego, E. M. et al. “Ab initio” synthesis of zeolites for preestablished catalytic reactions. Science 355, 1051–1054 (2017).

Li, C. et al. Synthesis of reaction‐adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure‐directing agents. Nat. Catal. 1, 547–554 (2018).

Li, J. et al. Cavity controls the selectivity: insights of confinement effects on MTO reaction. ACS Catal. 5, 661–665 (2014).

Goetze, J., Yarulina, I., Gascon, J., Kapteijn, F. & Weckhuysen, B. M. Revealing lattice expansion of small-pore zeolite catalysts during the methanol-to-olefins process using combined operando X-ray diffraction and UV-vis spectroscopy. ACS Catal. 8, 2060–2070 (2018).

Shen, B. et al. A single-molecule van der Waals compass. Nature 592, 541–544 (2021).

Vogiatzis, K. D., Li, G., Hensen, E. J. M., Gagliardi, L. & Pidko, E. A. Electronic structure of the [Cu3(u-O)3]2+ Cluster in Mordenite Zeolite and Its Effects on the Methane to Methanol Oxidation. J. Phys. Chem. C 121, 22295–22302 (2017).

Harris, J. W., Bates, J. S., Bukowski, B. C., Greeley, J. & Gounder, R. Opportunities in catalysis over metal-zeotypes enabled by descriptions of active centers beyond their binding site. ACS Catal. 10, 9476–9495 (2020).

Liu, L. et al. Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution. Nat. Chem. 11, 622–628 (2019).

Liu, L. et al. Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nat. Commun. 9, 574 (2018).

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Grimme, S., Antony, J., Ehrlich, S. & Krieg, S. A Consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

Hafner, J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29, 2044–2078 (2008).

Kresse, G. & Furthmüller, J. Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).

Sanville, E., Kenny, S. D., Smith, R. & Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comp. Chem. 28, 899–908 (2007).

López-Haro, M. et al. A macroscopically relevant 3D-metrology approach for nanocatalysis research. Part. Part. Syst. Charact. 35, 1700343 (2018).

Kirkland, E. J. Advanced Computing in Electron Microscopy (Springer, 2010).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem