- -

Direct assessment of confinement effect in zeolite-encapsulated subnanometric metal species

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Direct assessment of confinement effect in zeolite-encapsulated subnanometric metal species

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Liu, Lichen es_ES
dc.contributor.author López-Haro, Miguel es_ES
dc.contributor.author Perez-Omil, Jose Antonio es_ES
dc.contributor.author Boronat Zaragoza, Mercedes es_ES
dc.contributor.author Calvino, Jose Juan es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2023-06-26T18:01:26Z
dc.date.available 2023-06-26T18:01:26Z
dc.date.issued 2022-02-10 es_ES
dc.identifier.issn 2041-1723 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194562
dc.description.abstract [EN] Subnanometric metal species confined inside the microporous channels/cavities of zeolites have been demonstrated as stable and efficient catalysts. The confinement interaction between the metal species and zeolite framework has been proposed to play the key role for stabilization, though the confinement interaction is elusive to be identified and measured. By combining theoretical calculations, imaging simulation and experimental measurements based on the scanning transmission electron microscopy-integrated differential phase contrast imaging technique, we have studied the location and coordination environment of isolated iridium atoms and clusters confined in zeolite. The image analysis results indicate that the local strain is intimately related to the strength of metal-zeolite interaction and a good correlation is found between the zeolite deformation energy, the charge state of the iridium species and the local absolute strain. The direct observation of confinement with subnanometric metal species encapsulated in zeolites provides insights to understand their structural features and catalytic consequences. Zeolite-encapsulated metal nanoparticles have important catalytic properties, but their effect on the zeolite local structure has been difficult to characterize. Here the authors, using DFT calculations and scanning transmission electron microscopy, characterize the local strain due to confinement effects in metal-zeolite catalysts. es_ES
dc.description.sponsorship This work has been supported by the Spanish government through the "Severo Ochoa Program" (SEV-2016-0683) (A.C. and M.B.) and PID2020-112590GB-C21 (M.B.). High-resolution STEM measurements were performed at DME-UCA node of ICTS ELECMI in Cadiz University with financial support from FEDER/MINECO (MAT2017-87579-R (J.J.C.), PID2020-113006-RB-I00 (J.J.C.) and PID2019-110018GA-I00 (M.L.-H.)). The computations were performed on the Tirant III cluster of the Servei d'Informatica of the University of Valencia. The supports from Tsinghua University (L.L.) are also acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reconocimiento (by) es_ES
dc.title Direct assessment of confinement effect in zeolite-encapsulated subnanometric metal species es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41467-022-28356-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-87579-R/ES/FASES 2D ULTRAFINAS SOBRE OXIDOS CON MORFOLOGIA CONTROLADA: PLATAFORMA DE NANOCATALIZADORES MULTICOMPONENTE CON APLICACIONES EN PROTECCION DEL MEDIO AMBIENTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-110018GA-I00/ES/HACIA CATALIZADORES HOMO Y HETERO DIATOMICOS DE AU-PD SOPORTADOS SOBRE OXIDOS: SINTEIS, CATACTERIZACION ATOMICA Y ACTIVIDAD EN LA REACCION DE OXIDACION SELECTIVA DE ALCOHOLES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112590GB-C21/ES/MATERIALES HIBRIDOS DE BAJA DIMENSIONALIDAD CON MORFOLOGIA, ESTRUCTURACION Y REACTIVIDAD CONTROLABLE PARA LLEVAR A CABO PROCESOS CATALITICOS Y NANOTECNOLOGICOS / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113006RB-I00/ES/METALES NOBLES ULTRADISPERSOS SOBRE CAPAS ULTRAFINAS DE OXIDOS MODELO BASADOS EN CERIO: APLICACIONES EN PROCESOS DE CATALISIS MEDIOAMBIENTAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Liu, L.; López-Haro, M.; Perez-Omil, JA.; Boronat Zaragoza, M.; Calvino, JJ.; Corma Canós, A. (2022). Direct assessment of confinement effect in zeolite-encapsulated subnanometric metal species. Nature Communications. 13(1):1-10. https://doi.org/10.1038/s41467-022-28356-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41467-022-28356-y es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 35145095 es_ES
dc.identifier.pmcid PMC8831493 es_ES
dc.relation.pasarela S\490307 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020). es_ES
dc.description.references Fu, Q., Yang, F. & Bao, X. Interface-confined oxide nanostructures for catalytic oxidation reactions. Acc. Chem. Res. 46, 1692–1701 (2013). es_ES
dc.description.references Gounder, R. & Iglesia, E. The roles of entropy and enthalpy in stabilizing ion-pairs at transition states in zeolite acid catalysis. Acc. Chem. Res. 45, 229–238 (2012). es_ES
dc.description.references Sastre, G. & Corma, A. The confinement effect in zeolites. J. Mol. Catal. A: Chem. 305, 3–7 (2009). es_ES
dc.description.references Boronat, M. & Corma, A. What is measured when measuring acidity in zeolites with probe molecules? ACS Catal. 9, 1539–1548 (2019). es_ES
dc.description.references Li, C. Chiral synthesis on catalysts immobilized in microporous and mesoporous materials. Catal. Rev. 46, 419–492 (2011). es_ES
dc.description.references Thomas, J. M. & Raja, R. Exploiting nanospace for asymmetric catalysis: confinement of immobilized, single-site chiral catalysts enhances enantioselectivity. Acc. Chem. Res. 41, 708–720 (2008). es_ES
dc.description.references Cho, H. J. et al. Molecular-level proximity of metal and acid sites in zeolite-encapsulated Pt nanoparticles for selective multistep tandem catalysis. ACS Catal. 10, 3340–3348 (2019). es_ES
dc.description.references Wang, N., Sun, Q. & Yu, J. Ultrasmall metal nanoparticles confined within crystalline nanoporous materials: a fascinating class of nanocatalysts. Adv. Mater. 31, e1803966 (2019). es_ES
dc.description.references Wu, S. M., Yang, X. Y. & Janiak, C. Confinement effects in zeolite-confined noble metals. Angew. Chem. Int. Ed. 58, 12340–12354 (2019). es_ES
dc.description.references Wang, L., Xu, S., He, S. & Xiao, F.-S. Rational construction of metal nanoparticles fixed in zeolite crystals as highly efficient heterogeneous catalysts. Nano Today 20, 74–83 (2018). es_ES
dc.description.references Liu, L. & Corma, A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat. Rev. Mater. 6, 244–263 (2020). es_ES
dc.description.references Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017). es_ES
dc.description.references Liu, L. et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 18, 866–873 (2019). es_ES
dc.description.references Aydin, C. et al. Tracking iridium atoms with electron microscopy: first steps of metal nanocluster formation in one-dimensional zeolite channels. Nano Lett. 11, 5537–5541 (2011). es_ES
dc.description.references Warner, J. H., Young, N. P., Kirkland, A. I. & Briggs, G. A. Resolving strain in carbon nanotubes at the atomic level. Nat. Mater. 10, 958–962 (2011). es_ES
dc.description.references Mukherjee, D., Gamler, J. T. L., Skrabalak, S. E. & Unocic, R. R. Lattice strain measurement of Core@Shell electrocatalysts with 4D scanning transmission electron microscopy nanobeam electron diffraction. ACS Catal. 10, 5529–5541 (2020). es_ES
dc.description.references Oh, M. H. et al. Design and synthesis of multigrain nanocrystals via geometric misfit strain. Nature 577, 359–363 (2020). es_ES
dc.description.references Lopez-Haro, M. et al. Strain field in ultrasmall gold nanoparticles supported on cerium-based mixed oxides. key influence of the support redox state. Langmuir 32, 4313–4322 (2016). es_ES
dc.description.references You, B. et al. Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 31, e1807001 (2019). es_ES
dc.description.references Yang, S., Liu, F., Wu, C. & Yang, S. Tuning surface properties of low dimensional materials via strain engineering. Small 12, 4028–4047 (2016). es_ES
dc.description.references Wu, J. et al. Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. Chem. Soc. Rev. 41, 8066–8074 (2012). es_ES
dc.description.references Ortalan, V., Uzun, A., Gates, B. C. & Browning, N. D. Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite. Nat. Nanotechnol. 5, 506–510 (2010). es_ES
dc.description.references Juneau, M. et al. Characterization of metal‐zeolite composite catalysts: determining the environment of the active phase. ChemCatChem 12, 1826–1852 (2020). es_ES
dc.description.references Lazic, I., Bosch, E. G. T. & Lazar, S. Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy 160, 265–280 (2016). es_ES
dc.description.references Leonowicz, M. E., Lawton, J. A., Lawton, S. L. & Rubin, M. K. MCM-22: a molecular sieve with two independent multidimensional channel systems. Science 264, 1910–1913 (1994). es_ES
dc.description.references Hou, D., Grajciar, L., Nachtigall, P. & Heard, C. J. Origin of the unusual stability of zeolite-encapsulated sub-nanometer platinum. ACS Catal. 10, 11057–11068 (2020). es_ES
dc.description.references Liu, L. et al. Regioselective generation of single-site iridium atoms and their evolution into stabilized subnanometric iridium clusters in MWW zeolite. Angew. Chem. Int. Ed. 59, 15695–15702 (2020). es_ES
dc.description.references Márquez, F., García, H., Palomares, E., Fernández, L. & Corma, A. Spectroscopic evidence in support of the molecular orbital confinement concept: case of anthracene incorporated in zeolites. J. Am. Chem. Soc. 122, 6520–6521 (2000). es_ES
dc.description.references Gallego, E. M. et al. “Ab initio” synthesis of zeolites for preestablished catalytic reactions. Science 355, 1051–1054 (2017). es_ES
dc.description.references Li, C. et al. Synthesis of reaction‐adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure‐directing agents. Nat. Catal. 1, 547–554 (2018). es_ES
dc.description.references Li, J. et al. Cavity controls the selectivity: insights of confinement effects on MTO reaction. ACS Catal. 5, 661–665 (2014). es_ES
dc.description.references Goetze, J., Yarulina, I., Gascon, J., Kapteijn, F. & Weckhuysen, B. M. Revealing lattice expansion of small-pore zeolite catalysts during the methanol-to-olefins process using combined operando X-ray diffraction and UV-vis spectroscopy. ACS Catal. 8, 2060–2070 (2018). es_ES
dc.description.references Shen, B. et al. A single-molecule van der Waals compass. Nature 592, 541–544 (2021). es_ES
dc.description.references Vogiatzis, K. D., Li, G., Hensen, E. J. M., Gagliardi, L. & Pidko, E. A. Electronic structure of the [Cu3(u-O)3]2+ Cluster in Mordenite Zeolite and Its Effects on the Methane to Methanol Oxidation. J. Phys. Chem. C 121, 22295–22302 (2017). es_ES
dc.description.references Harris, J. W., Bates, J. S., Bukowski, B. C., Greeley, J. & Gounder, R. Opportunities in catalysis over metal-zeotypes enabled by descriptions of active centers beyond their binding site. ACS Catal. 10, 9476–9495 (2020). es_ES
dc.description.references Liu, L. et al. Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution. Nat. Chem. 11, 622–628 (2019). es_ES
dc.description.references Liu, L. et al. Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nat. Commun. 9, 574 (2018). es_ES
dc.description.references Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). es_ES
dc.description.references Grimme, S., Antony, J., Ehrlich, S. & Krieg, S. A Consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). es_ES
dc.description.references Hafner, J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29, 2044–2078 (2008). es_ES
dc.description.references Kresse, G. & Furthmüller, J. Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). es_ES
dc.description.references Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). es_ES
dc.description.references Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006). es_ES
dc.description.references Sanville, E., Kenny, S. D., Smith, R. & Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comp. Chem. 28, 899–908 (2007). es_ES
dc.description.references López-Haro, M. et al. A macroscopically relevant 3D-metrology approach for nanocatalysis research. Part. Part. Syst. Charact. 35, 1700343 (2018). es_ES
dc.description.references Kirkland, E. J. Advanced Computing in Electron Microscopy (Springer, 2010). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem