- -

Parts-per-million of ruthenium catalyze the selective chain-walking reaction of terminal alkenes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Parts-per-million of ruthenium catalyze the selective chain-walking reaction of terminal alkenes

Mostrar el registro completo del ítem

Sanz-Navarro, S.; Mon-Conejero, M.; Doménech-Carbó, A.; Greco, R.; Sánchez-Quesada, J.; Espinós-Ferri, E.; Leyva Perez, A. (2022). Parts-per-million of ruthenium catalyze the selective chain-walking reaction of terminal alkenes. Nature Communications. 13(1):1-9. https://doi.org/10.1038/s41467-022-30320-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194563

Ficheros en el ítem

Metadatos del ítem

Título: Parts-per-million of ruthenium catalyze the selective chain-walking reaction of terminal alkenes
Autor: Sanz-Navarro, Sergio Mon-Conejero, Marta Doménech-Carbó, Antonio Greco, Rossella Sánchez-Quesada, Jorge Espinós-Ferri, Estela Leyva Perez, Antonio
Fecha difusión:
Resumen:
[EN] The chain-walking of terminal alkenes (also called migration or isomerization reaction) is currently carried out in industry with unselective and relatively costly processes, to give mixtures of alkenes with significant ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Nature Communications. (issn: 2041-1723 )
DOI: 10.1038/s41467-022-30320-9
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41467-022-30320-9
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-86735-P/ES/CATALISIS CON ATOMOS METALICOS AISLADOS Y CLUSTERES ULTRAPEQUEÑOS BIEN DEFINIDOS, SIN LIGANDOS Y CONFINADOS/
info:eu-repo/grantAgreement/MCIU//SEV-2016-0683/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115100GB-I00/ES/CLUSTERES CATALITICOS MULTIMETALICOS Y DE ALTA ENTROPIA PARA SINTESIS ORGANICA/
info:eu-repo/grantAgreement/MICINN//FJC2019-040523-I/
Agradecimientos:
A.L.-P. thanks the financial support by IFF and MICIIN (PID2020-115100GB-I00). We also thank the funding for open access charge to the Universitat Politecnica de Valencia. S.S.-N. thanks a fellowship from MINECO (project ...[+]
Tipo: Artículo

References

Keim, W. Oligomerization of Ethylene to α–Olefins: Discovery and Development of the Shell Higher Olefin Process (SHOP). Angew. Chem. Int. Ed. 52, 12492–12496 (2013).

Ertl, P. & Schuhmann, T. A Systematic Cheminformatics Analysis of Functional Groups Occurring in Natural Products. J. Nat. Prod. 82, 1258–1263 (2019).

Mol, J. C. Industrial applications of olefin metathesis. J. Mol. Catal. A Chem. 213, 39–45 (2004). [+]
Keim, W. Oligomerization of Ethylene to α–Olefins: Discovery and Development of the Shell Higher Olefin Process (SHOP). Angew. Chem. Int. Ed. 52, 12492–12496 (2013).

Ertl, P. & Schuhmann, T. A Systematic Cheminformatics Analysis of Functional Groups Occurring in Natural Products. J. Nat. Prod. 82, 1258–1263 (2019).

Mol, J. C. Industrial applications of olefin metathesis. J. Mol. Catal. A Chem. 213, 39–45 (2004).

Hilt, G. Double Bond Isomerisation and Migration—New Playgrounds for Transition Metal–Catalysis. ChemCatChem 6, 2484–2485 (2014).

Sommer, H., Juliá–Hernández, F., Martin, R. & Marek, I. Walking Metals for Remote Functionalization. ACS Cent. Sci. 4, 153–165 (2018).

Basbug Alhan, H. E., Jones, G. R. & Harth, E. Branching Regulation in Olefin Polymerization via Lewis Acid Triggered Isomerization of Monomers. Angew. Chem. Int. Ed. 59, 4743–4749 (2020).

Larsen, C. R. & Grotjahn, D. B. Stereoselective Alkene Isomerization over One Position. J. Am. Chem. Soc. 134, 10357–10360 (2012).

Larsen, C. R., Erdogan, G. & Grotjahn, D. B. General Catalyst Control of the Monoisomerization of 1-Alkenes to trans-2-Alkenes. J. Am. Chem. Soc. 136, 1226–1229 (2014).

Cao, T. C., Cooksy, A. L. & Grotjahn, D. B. Origins of High Kinetic (E)-Selectivity in Alkene Isomerization by a CpRu(PN) Catalyst: a Combined Experimental and Computational Approach. ACS Catal. 10, 15250–15258 (2020).

Kapat, A., Sperger, T., Guven, S. & Schoenebeck, F. E–Olefins through intramolecular radical relocation. Science 363, 391–396 (2019).

Kapat, A. & Schoenebeck, F. Isomerization of alkenes. PCT Int. Appl. WO 2020/058505 A1 (2020).

Lv, Z. et al. A General Strategy for Open–Flask Alkene Isomerization by Ruthenium Hydride Complexes with Non–Redox Metal Salts. ChemCatChem 9, 3849–3859 (2017).

Zhuo, L.-G., Yao, Z.-K. & Yu, Z.-X. Synthesis of Z–Alkenes from Rh(I)–Catalyzed Olefin Isomerization of β,γ–Unsaturated Ketones. Org. Lett. 15, 4634–4637 (2013).

Wang, Y., Qin, C., Jia, X., Leng, X. & Huang, Z. An Agostic Iridium Pincer Complex as a Highly Efficient and Selective Catalyst for Monoisomerization of 1‐Alkenes to trans‐2‐Alkenes. Angew. Chem. Int. Ed. 56, 1614–1618 (2017).

Woof, C. R., Durand, D. J., Fey, N., Richards, E. & Webster, R. L. Iron Catalyzed Double Bond Isomerization: Evidence for an FeI/FeIII Catalytic Cycle. Chem. Eur. J. 27, 5972–5977 (2021).

Molloy, J. J., Morack, T. & Gilmour, R. Positional and Geometrical Isomerisation of Alkenes: The Pinnacle of Atom Economy. Angew. Chem. Int. Ed. 58, 13654–13664 (2019).

Bayram, E. et al. Is It Homogeneous or Heterogeneous Catalysis Derived from [RhCp*Cl2]2? In Operando XAFS, Kinetic, and Crucial Kinetic Poisoning Evidence for Subnanometer Rh4 Cluster–Based Benzene Hydrogenation Catalysis. J. Am. Chem. Soc. 133, 18889–18902 (2011).

Oliver–Meseguer, J., Cabrero–Antonino, J. R., Domínguez, I., Leyva–Pérez, A. & Corma, A. Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 107 at Room Temperature. Science 338, 1452–1455 (2012).

Eremin, D. B. & Ananikov, V. P. Understanding Active Species in Catalytic Transformations: from Molecular Catalysis to Nanoparticles, Leaching, “Cocktails” of Catalysts and Dynamic Systems. Coord. Chem. Rev. 346, 2–19 (2017).

Goodman, E. D. et al. Catalyst deactivation via decomposition into single atoms and the role of metal loading. Nat. Catal. 2, 748–755 (2019).

Fernández, E. et al. Base–Controlled Heck, Suzuki and Sonogashira Reactions Catalyzed by Ligand–Free Platinum or Palladium Single Atom and Sub–Nanometer Clusters. J. Am. Chem. Soc. 141, 1928–1940 (2019).

Wang, H. et al. Boosted molecular mobility during common chemical reactions. Science 369, 537–541 (2020).

Fu, J. et al. C–O bond activation using ultralow loading of noble metal catalysts on moderately reducible oxides. Nat. Catal. 3, 446–453 (2020).

Chernyshev, V. M., Denisova, E. A., Eremin, D. B. & Ananikov, V. P. The Key Role of R–NHC Couplings (R = C, H, Heteroatom) and M–NHC Bond Cleavage in the Evolution of M/NHC Complexes and Formation of Catalytically Active Species. Chem. Sci. 11, 6957–6977 (2020).

Garnes–Portolés, F. et al. Antonio Leyva–Pérez, Regioirregular and catalytic Mizoroki–Heck reactions. Nat. Catal. 4, 293–303 (2021).

Pandya, C. et al. Designing and synthesis of phosphine derivatives of Ru3(CO)12 – Studies on catalytic isomerization of 1–alkenes. Inorg. Chim. Acta 518, 120211 (2021).

Hassam, M., Taher, A., Arnott, G. E., Green, I. R. & van Otterlo, W. A. L. Isomerization of Allylbenzenes. Chem. Rev. 115, 5462–5569 (2015).

Mei, T.-S., Patel, H. H. & Sigman, M. S. Enantioselective Construction of Remote Quaternary Stereocentres. Nature 508, 340–344 (2014).

Hilton, M. J. et al. Investigating the Nature of Palladium Chain-Walking in the Enantioselective Redox-Relay Heck Reaction of Alkenyl Alcohols. J. Org. Chem. 79, 11841–11850 (2014).

Ross, S. P., Rahman, A. A. & Sigman, M. S. Development and Mechanistic Interrogation of Interrupted Chain-Walking in the Enantioselective Relay Heck Reaction. J. Am. Chem. Soc. 142, 10516–10525 (2020).

Uma, R., Crévisy, C. & Grée, R. Transposition of Allylic Alcohols into Carbonyl Compounds Mediated by Transition Metal Complexes. Chem. Rev. 103, 27–52 (2003).

Rivero–Crespo, M. A. et al. Cyclic Metal(oid) Clusters Control Platinum–Catalysed Hydrosilylation Reactions: from Soluble to Zeolite and MOF Catalysts. Chem. Sci. 11, 8113–8124 (2020).

Rubio−Marqués, P., Rivero−Crespo, M. A., Leyva−Pérez, A. & Corma, A. Well−Defined Noble Metal Single Sites in Zeolites as an Alternative to Catalysis by Insoluble Metal Salts. J. Am. Chem. Soc. 137, 11832–11837 (2015).

Rivero-Crespo, M. Á., Tejeda-Serrano, M., Pérez-Sánchez, H., Cerón-Carrasco, J. P. & Leyva-Pérez, A. Intermolecular Carbonyl–Olefin Metathesis with Vinyl Ethers Catalysed by Homogeneous and Solid Acids in Flow. Angew. Chem. Int. Ed. 59, 3846–3849 (2020).

Dhungana, R. K., Sapkota, R. R., Niroula, D. & Giri, R. Walking metals: catalytic difunctionalization of alkenes at nonclassical sites. Chem. Sci. 11, 9757–9774 (2020).

Fiorito, D., Scaringi, S. & Mazet, C. Transition metal–catalyzed alkene isomerization as an enabling technology in tandem, sequential and domino processes. Chem. Soc. Rev. 50, 1391–1406 (2021).

Wu, L., Liu, Q., Fleischer, I., Jackstell, R. & Beller, M. Ruthenium–catalysed alkoxycarbonylation of alkenes with carbon dioxide. Nat. Commun. 5, 3091 (2014).

Hitce, J. et al. Flash–metathesis for the coupling of sustainable (poly)hydroxyl β–methylstyrenes from essential oils. Green. Chem. 17, 3756–3761 (2015).

Romano, C. & Mazet, C. Multicatalytic Stereoselective Synthesis of Highly Substituted Alkenes by Sequential Isomerization/Cross–Coupling Reactions. J. Am. Chem. Soc. 140, 4743–4750 (2018).

Sarma, B. B. et al. One–Pot Cooperation of Single–Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerization–Hydrosilylation Process. Angew. Chem. Int. Ed. 59, 5806–5815 (2020).

Murray, R. E., Walter, E. L. & Doll, K. M. Tandem Isomerization–Decarboxylation for Converting Alkenoic Fatty Acids into Alkenes. ACS Catal. 4, 3517–3520 (2014).

Domínguez, I., Arrebola, F. J., Martínez Vidal, J. L. & Garrido Frenich, A. Assessment of wastewater pollution by gas chromatography and high resolution Orbitrap mass spectrometry. J. Chromatogr. A 1619, 460964 (2020).

Underwood, C. C., Stadelman, B. S., Sleeper, M. L. & Brumaghim, J. L. Synthesis and Electrochemical Characterization of [Ru(NCCH3)6]2+, Tris(Acetonitrile) Tris(Pyrazolyl)Borate, and Tris(Acetonitrile) Tris(Pyrazolyl)Methane Ruthenium(II) Complexes. Inorg. Chim. Acta 405, 470–476 (2013).

Ryabob, A. D. et al. Synthesis, Characterization, and Electrochemistry of Biorelevant Photosensitive Low−Potential Orthomethalated Ruthenium Complexes. Inorg. Chem. 44, 1626–1634 (2005).

Karlen, T. & Ludi, A. Isomerization of Olefins Catalyzed by the Hexaaquaruthenium(2+) Ion. Helv. Chim. Acta 75, 1604–1606 (1992).

Kantcheva, M. & Sayan, S. On the mechanism of CO adsorption on a silica–supported ruthenium catalyst. Catal. Lett. 60, 27–38 (1999).

Chin, S. Y., Williams, C. T. & Amiridis, M. D. FTIR Studies of CO Adsorption on Al2O3– and SiO2–Supported Ru Catalysts. J. Phys. Chem. B 110, 871–882 (2006).

Lutz, S. A., Hickey, A. K., Gao, Y., Chen, C. –H. & Smith, J. M. Two–State Reactivity in Iron–Catalyzed Alkene Isomerization Confers σ‑Base Resistance. J. Am. Chem. Soc. 142, 15527–15535 (2020).

Massad, I. & Marek, I. Alkene Isomerization through Allylmetals as a Strategic Tool in Stereoselective Synthesis. ACS Catal. 10, 5793–5804 (2020).

Juliá–Hernández, F., Moragas, T., Cornella, J. & Martin, R. Remote carboxylation of halogenated aliphatic hydrocarbons with carbon dioxide. Nature 545, 84–89 (2017).

Halpern, J. Mechanistic Aspects of Homogeneous Catalytic Hydrogenation and Related Processes. Inorg. Chim. Acta 50, 11–19 (1981).

Yih, K.-H. et al. Synthesis and Characterization of [Ir(1,5–Cyclooctadiene)(μ–H)]4: A Tetrametallic Ir4H4–Core, Coordinatively Unsaturated Cluster. Inorg. Chem. 51, 3186–3193 (2012).

Laxson, W. W., Özkar, S., Folkman, S. & Finke, R. G. The story of a mechanism–based solution to an irreproducible synthesis resulting in an unexpected closed–system requirement for the LiBEt3H–based reduction: The case of the novel subnanometer cluster, [Ir(1,5–COD)(μ–H)]4, and the resulting improved, independently repeatable, reliable synthesis. Inorg. Chim. Acta 432, 250–257 (2015).

Martinho Simoes, J. A. & Beauchamp, J. L. Transition metal-hydrogen and metal-carbon bond strengths: the keys to catalysis. Chem. Rev. 90, 629–688 (1990).

Smith, S. E., Sasaki, J. M., Bergman, R. G., Mondloch, J. E. & Finke, R. G. Platinum–Catalyzed Phenyl and Methyl Group Transfer from Tin to Iridium:  Evidence for an Autocatalytic Reaction Pathway with an Unusual Preference for Methyl Transfer. J. Am. Chem. Soc. 130, 1839–1841 (2008).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem