- -

Parts-per-million of ruthenium catalyze the selective chain-walking reaction of terminal alkenes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Parts-per-million of ruthenium catalyze the selective chain-walking reaction of terminal alkenes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sanz-Navarro, Sergio es_ES
dc.contributor.author Mon-Conejero, Marta es_ES
dc.contributor.author Doménech-Carbó, Antonio es_ES
dc.contributor.author Greco, Rossella es_ES
dc.contributor.author Sánchez-Quesada, Jorge es_ES
dc.contributor.author Espinós-Ferri, Estela es_ES
dc.contributor.author Leyva Perez, Antonio es_ES
dc.date.accessioned 2023-06-26T18:01:27Z
dc.date.available 2023-06-26T18:01:27Z
dc.date.issued 2022-05-20 es_ES
dc.identifier.issn 2041-1723 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194563
dc.description.abstract [EN] The chain-walking of terminal alkenes (also called migration or isomerization reaction) is currently carried out in industry with unselective and relatively costly processes, to give mixtures of alkenes with significant amounts of oligomerized, branched and reduced by-products. Here, it is shown that part-per-million amounts of a variety of commercially available and in-house made ruthenium compounds, supported or not, transform into an extremely active catalyst for the regioselective migration of terminal alkenes to internal positions, with yields and selectivity up to >99% and without any solvent, ligand, additive or protecting atmosphere required, but only heating at temperatures >150 degrees C. The resulting internal alkene can be prepared in kilogram quantities, ready to be used in nine different organic reactions without any further treatment. The chain-walking of terminal alkenes is an industrially relevant reaction. Here, the authors show that part-per-million amounts of a variety of ruthenium compounds catalyze the reaction in yields and selectivity up to >99%, without any solvent or additive. es_ES
dc.description.sponsorship A.L.-P. thanks the financial support by IFF and MICIIN (PID2020-115100GB-I00). We also thank the funding for open access charge to the Universitat Politecnica de Valencia. S.S.-N. thanks a fellowship from MINECO (project number CTQ 2017-86735-P). M.-Mon thanks MICIIN from a contract under the Juan de la Cierva program (FJC2019-040523-I). R.G. thanks a contract from the ITQ (SEV-2016-0683). We thank Dr. I. Dominguez for performing Orbitrap experiments. We thank V. Carbonell Vanaclocha for his help in the laboratory. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reconocimiento (by) es_ES
dc.title Parts-per-million of ruthenium catalyze the selective chain-walking reaction of terminal alkenes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41467-022-30320-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-86735-P/ES/CATALISIS CON ATOMOS METALICOS AISLADOS Y CLUSTERES ULTRAPEQUEÑOS BIEN DEFINIDOS, SIN LIGANDOS Y CONFINADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115100GB-I00/ES/CLUSTERES CATALITICOS MULTIMETALICOS Y DE ALTA ENTROPIA PARA SINTESIS ORGANICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FJC2019-040523-I/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Sanz-Navarro, S.; Mon-Conejero, M.; Doménech-Carbó, A.; Greco, R.; Sánchez-Quesada, J.; Espinós-Ferri, E.; Leyva Perez, A. (2022). Parts-per-million of ruthenium catalyze the selective chain-walking reaction of terminal alkenes. Nature Communications. 13(1):1-9. https://doi.org/10.1038/s41467-022-30320-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41467-022-30320-9 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 35595741 es_ES
dc.identifier.pmcid PMC9123009 es_ES
dc.relation.pasarela S\477628 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Keim, W. Oligomerization of Ethylene to α–Olefins: Discovery and Development of the Shell Higher Olefin Process (SHOP). Angew. Chem. Int. Ed. 52, 12492–12496 (2013). es_ES
dc.description.references Ertl, P. & Schuhmann, T. A Systematic Cheminformatics Analysis of Functional Groups Occurring in Natural Products. J. Nat. Prod. 82, 1258–1263 (2019). es_ES
dc.description.references Mol, J. C. Industrial applications of olefin metathesis. J. Mol. Catal. A Chem. 213, 39–45 (2004). es_ES
dc.description.references Hilt, G. Double Bond Isomerisation and Migration—New Playgrounds for Transition Metal–Catalysis. ChemCatChem 6, 2484–2485 (2014). es_ES
dc.description.references Sommer, H., Juliá–Hernández, F., Martin, R. & Marek, I. Walking Metals for Remote Functionalization. ACS Cent. Sci. 4, 153–165 (2018). es_ES
dc.description.references Basbug Alhan, H. E., Jones, G. R. & Harth, E. Branching Regulation in Olefin Polymerization via Lewis Acid Triggered Isomerization of Monomers. Angew. Chem. Int. Ed. 59, 4743–4749 (2020). es_ES
dc.description.references Larsen, C. R. & Grotjahn, D. B. Stereoselective Alkene Isomerization over One Position. J. Am. Chem. Soc. 134, 10357–10360 (2012). es_ES
dc.description.references Larsen, C. R., Erdogan, G. & Grotjahn, D. B. General Catalyst Control of the Monoisomerization of 1-Alkenes to trans-2-Alkenes. J. Am. Chem. Soc. 136, 1226–1229 (2014). es_ES
dc.description.references Cao, T. C., Cooksy, A. L. & Grotjahn, D. B. Origins of High Kinetic (E)-Selectivity in Alkene Isomerization by a CpRu(PN) Catalyst: a Combined Experimental and Computational Approach. ACS Catal. 10, 15250–15258 (2020). es_ES
dc.description.references Kapat, A., Sperger, T., Guven, S. & Schoenebeck, F. E–Olefins through intramolecular radical relocation. Science 363, 391–396 (2019). es_ES
dc.description.references Kapat, A. & Schoenebeck, F. Isomerization of alkenes. PCT Int. Appl. WO 2020/058505 A1 (2020). es_ES
dc.description.references Lv, Z. et al. A General Strategy for Open–Flask Alkene Isomerization by Ruthenium Hydride Complexes with Non–Redox Metal Salts. ChemCatChem 9, 3849–3859 (2017). es_ES
dc.description.references Zhuo, L.-G., Yao, Z.-K. & Yu, Z.-X. Synthesis of Z–Alkenes from Rh(I)–Catalyzed Olefin Isomerization of β,γ–Unsaturated Ketones. Org. Lett. 15, 4634–4637 (2013). es_ES
dc.description.references Wang, Y., Qin, C., Jia, X., Leng, X. & Huang, Z. An Agostic Iridium Pincer Complex as a Highly Efficient and Selective Catalyst for Monoisomerization of 1‐Alkenes to trans‐2‐Alkenes. Angew. Chem. Int. Ed. 56, 1614–1618 (2017). es_ES
dc.description.references Woof, C. R., Durand, D. J., Fey, N., Richards, E. & Webster, R. L. Iron Catalyzed Double Bond Isomerization: Evidence for an FeI/FeIII Catalytic Cycle. Chem. Eur. J. 27, 5972–5977 (2021). es_ES
dc.description.references Molloy, J. J., Morack, T. & Gilmour, R. Positional and Geometrical Isomerisation of Alkenes: The Pinnacle of Atom Economy. Angew. Chem. Int. Ed. 58, 13654–13664 (2019). es_ES
dc.description.references Bayram, E. et al. Is It Homogeneous or Heterogeneous Catalysis Derived from [RhCp*Cl2]2? In Operando XAFS, Kinetic, and Crucial Kinetic Poisoning Evidence for Subnanometer Rh4 Cluster–Based Benzene Hydrogenation Catalysis. J. Am. Chem. Soc. 133, 18889–18902 (2011). es_ES
dc.description.references Oliver–Meseguer, J., Cabrero–Antonino, J. R., Domínguez, I., Leyva–Pérez, A. & Corma, A. Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 107 at Room Temperature. Science 338, 1452–1455 (2012). es_ES
dc.description.references Eremin, D. B. & Ananikov, V. P. Understanding Active Species in Catalytic Transformations: from Molecular Catalysis to Nanoparticles, Leaching, “Cocktails” of Catalysts and Dynamic Systems. Coord. Chem. Rev. 346, 2–19 (2017). es_ES
dc.description.references Goodman, E. D. et al. Catalyst deactivation via decomposition into single atoms and the role of metal loading. Nat. Catal. 2, 748–755 (2019). es_ES
dc.description.references Fernández, E. et al. Base–Controlled Heck, Suzuki and Sonogashira Reactions Catalyzed by Ligand–Free Platinum or Palladium Single Atom and Sub–Nanometer Clusters. J. Am. Chem. Soc. 141, 1928–1940 (2019). es_ES
dc.description.references Wang, H. et al. Boosted molecular mobility during common chemical reactions. Science 369, 537–541 (2020). es_ES
dc.description.references Fu, J. et al. C–O bond activation using ultralow loading of noble metal catalysts on moderately reducible oxides. Nat. Catal. 3, 446–453 (2020). es_ES
dc.description.references Chernyshev, V. M., Denisova, E. A., Eremin, D. B. & Ananikov, V. P. The Key Role of R–NHC Couplings (R = C, H, Heteroatom) and M–NHC Bond Cleavage in the Evolution of M/NHC Complexes and Formation of Catalytically Active Species. Chem. Sci. 11, 6957–6977 (2020). es_ES
dc.description.references Garnes–Portolés, F. et al. Antonio Leyva–Pérez, Regioirregular and catalytic Mizoroki–Heck reactions. Nat. Catal. 4, 293–303 (2021). es_ES
dc.description.references Pandya, C. et al. Designing and synthesis of phosphine derivatives of Ru3(CO)12 – Studies on catalytic isomerization of 1–alkenes. Inorg. Chim. Acta 518, 120211 (2021). es_ES
dc.description.references Hassam, M., Taher, A., Arnott, G. E., Green, I. R. & van Otterlo, W. A. L. Isomerization of Allylbenzenes. Chem. Rev. 115, 5462–5569 (2015). es_ES
dc.description.references Mei, T.-S., Patel, H. H. & Sigman, M. S. Enantioselective Construction of Remote Quaternary Stereocentres. Nature 508, 340–344 (2014). es_ES
dc.description.references Hilton, M. J. et al. Investigating the Nature of Palladium Chain-Walking in the Enantioselective Redox-Relay Heck Reaction of Alkenyl Alcohols. J. Org. Chem. 79, 11841–11850 (2014). es_ES
dc.description.references Ross, S. P., Rahman, A. A. & Sigman, M. S. Development and Mechanistic Interrogation of Interrupted Chain-Walking in the Enantioselective Relay Heck Reaction. J. Am. Chem. Soc. 142, 10516–10525 (2020). es_ES
dc.description.references Uma, R., Crévisy, C. & Grée, R. Transposition of Allylic Alcohols into Carbonyl Compounds Mediated by Transition Metal Complexes. Chem. Rev. 103, 27–52 (2003). es_ES
dc.description.references Rivero–Crespo, M. A. et al. Cyclic Metal(oid) Clusters Control Platinum–Catalysed Hydrosilylation Reactions: from Soluble to Zeolite and MOF Catalysts. Chem. Sci. 11, 8113–8124 (2020). es_ES
dc.description.references Rubio−Marqués, P., Rivero−Crespo, M. A., Leyva−Pérez, A. & Corma, A. Well−Defined Noble Metal Single Sites in Zeolites as an Alternative to Catalysis by Insoluble Metal Salts. J. Am. Chem. Soc. 137, 11832–11837 (2015). es_ES
dc.description.references Rivero-Crespo, M. Á., Tejeda-Serrano, M., Pérez-Sánchez, H., Cerón-Carrasco, J. P. & Leyva-Pérez, A. Intermolecular Carbonyl–Olefin Metathesis with Vinyl Ethers Catalysed by Homogeneous and Solid Acids in Flow. Angew. Chem. Int. Ed. 59, 3846–3849 (2020). es_ES
dc.description.references Dhungana, R. K., Sapkota, R. R., Niroula, D. & Giri, R. Walking metals: catalytic difunctionalization of alkenes at nonclassical sites. Chem. Sci. 11, 9757–9774 (2020). es_ES
dc.description.references Fiorito, D., Scaringi, S. & Mazet, C. Transition metal–catalyzed alkene isomerization as an enabling technology in tandem, sequential and domino processes. Chem. Soc. Rev. 50, 1391–1406 (2021). es_ES
dc.description.references Wu, L., Liu, Q., Fleischer, I., Jackstell, R. & Beller, M. Ruthenium–catalysed alkoxycarbonylation of alkenes with carbon dioxide. Nat. Commun. 5, 3091 (2014). es_ES
dc.description.references Hitce, J. et al. Flash–metathesis for the coupling of sustainable (poly)hydroxyl β–methylstyrenes from essential oils. Green. Chem. 17, 3756–3761 (2015). es_ES
dc.description.references Romano, C. & Mazet, C. Multicatalytic Stereoselective Synthesis of Highly Substituted Alkenes by Sequential Isomerization/Cross–Coupling Reactions. J. Am. Chem. Soc. 140, 4743–4750 (2018). es_ES
dc.description.references Sarma, B. B. et al. One–Pot Cooperation of Single–Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerization–Hydrosilylation Process. Angew. Chem. Int. Ed. 59, 5806–5815 (2020). es_ES
dc.description.references Murray, R. E., Walter, E. L. & Doll, K. M. Tandem Isomerization–Decarboxylation for Converting Alkenoic Fatty Acids into Alkenes. ACS Catal. 4, 3517–3520 (2014). es_ES
dc.description.references Domínguez, I., Arrebola, F. J., Martínez Vidal, J. L. & Garrido Frenich, A. Assessment of wastewater pollution by gas chromatography and high resolution Orbitrap mass spectrometry. J. Chromatogr. A 1619, 460964 (2020). es_ES
dc.description.references Underwood, C. C., Stadelman, B. S., Sleeper, M. L. & Brumaghim, J. L. Synthesis and Electrochemical Characterization of [Ru(NCCH3)6]2+, Tris(Acetonitrile) Tris(Pyrazolyl)Borate, and Tris(Acetonitrile) Tris(Pyrazolyl)Methane Ruthenium(II) Complexes. Inorg. Chim. Acta 405, 470–476 (2013). es_ES
dc.description.references Ryabob, A. D. et al. Synthesis, Characterization, and Electrochemistry of Biorelevant Photosensitive Low−Potential Orthomethalated Ruthenium Complexes. Inorg. Chem. 44, 1626–1634 (2005). es_ES
dc.description.references Karlen, T. & Ludi, A. Isomerization of Olefins Catalyzed by the Hexaaquaruthenium(2+) Ion. Helv. Chim. Acta 75, 1604–1606 (1992). es_ES
dc.description.references Kantcheva, M. & Sayan, S. On the mechanism of CO adsorption on a silica–supported ruthenium catalyst. Catal. Lett. 60, 27–38 (1999). es_ES
dc.description.references Chin, S. Y., Williams, C. T. & Amiridis, M. D. FTIR Studies of CO Adsorption on Al2O3– and SiO2–Supported Ru Catalysts. J. Phys. Chem. B 110, 871–882 (2006). es_ES
dc.description.references Lutz, S. A., Hickey, A. K., Gao, Y., Chen, C. –H. & Smith, J. M. Two–State Reactivity in Iron–Catalyzed Alkene Isomerization Confers σ‑Base Resistance. J. Am. Chem. Soc. 142, 15527–15535 (2020). es_ES
dc.description.references Massad, I. & Marek, I. Alkene Isomerization through Allylmetals as a Strategic Tool in Stereoselective Synthesis. ACS Catal. 10, 5793–5804 (2020). es_ES
dc.description.references Juliá–Hernández, F., Moragas, T., Cornella, J. & Martin, R. Remote carboxylation of halogenated aliphatic hydrocarbons with carbon dioxide. Nature 545, 84–89 (2017). es_ES
dc.description.references Halpern, J. Mechanistic Aspects of Homogeneous Catalytic Hydrogenation and Related Processes. Inorg. Chim. Acta 50, 11–19 (1981). es_ES
dc.description.references Yih, K.-H. et al. Synthesis and Characterization of [Ir(1,5–Cyclooctadiene)(μ–H)]4: A Tetrametallic Ir4H4–Core, Coordinatively Unsaturated Cluster. Inorg. Chem. 51, 3186–3193 (2012). es_ES
dc.description.references Laxson, W. W., Özkar, S., Folkman, S. & Finke, R. G. The story of a mechanism–based solution to an irreproducible synthesis resulting in an unexpected closed–system requirement for the LiBEt3H–based reduction: The case of the novel subnanometer cluster, [Ir(1,5–COD)(μ–H)]4, and the resulting improved, independently repeatable, reliable synthesis. Inorg. Chim. Acta 432, 250–257 (2015). es_ES
dc.description.references Martinho Simoes, J. A. & Beauchamp, J. L. Transition metal-hydrogen and metal-carbon bond strengths: the keys to catalysis. Chem. Rev. 90, 629–688 (1990). es_ES
dc.description.references Smith, S. E., Sasaki, J. M., Bergman, R. G., Mondloch, J. E. & Finke, R. G. Platinum–Catalyzed Phenyl and Methyl Group Transfer from Tin to Iridium:  Evidence for an Autocatalytic Reaction Pathway with an Unusual Preference for Methyl Transfer. J. Am. Chem. Soc. 130, 1839–1841 (2008). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem