- -

Predicting Coherent Turbulent Structures via Deep Learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Predicting Coherent Turbulent Structures via Deep Learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Schmekel, D. es_ES
dc.contributor.author Alcántara-Ávila, Francisco es_ES
dc.contributor.author Hoyas, S. es_ES
dc.contributor.author Vinuesa, R. es_ES
dc.date.accessioned 2023-07-04T18:01:37Z
dc.date.available 2023-07-04T18:01:37Z
dc.date.issued 2022-04-13 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194672
dc.description.abstract [EN] Turbulent flow is widespread in many applications, such as airplane wings or turbine blades. Such flow is highly chaotic and impossible to predict far into the future. Some regions exhibit a coherent physical behavior in turbulent flow, satisfying specific properties; these regions are denoted as coherent structures. This work considers structures connected with the Reynolds stresses, which are essential quantities for modeling and understanding turbulent flows. Deep-learning techniques have recently had promising results for modeling turbulence, and here we investigate their capabilities for modeling coherent structures. We use data from a direct numerical simulation (DNS) of a turbulent channel flow to train a convolutional neural network (CNN) and predict the number and volume of the coherent structures in the channel over time. Overall, the performance of the CNN model is very good, with a satisfactory agreement between the predicted geometrical properties of the structures and those of the reference DNS data. es_ES
dc.description.sponsorship RV acknowledges the financial support by the Göran Gustafsson foundation. SH was funded by Contract Nos. RTI2018-102256- B-I00 of Ministerio de Ciencia, innovación y Universidades/ FEDER. Part of the analysis was carried out using computational resources provided by the Swedish National Infrastructure for Computing (SNIC). es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media es_ES
dc.relation.ispartof Frontiers in Physics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Turbulence es_ES
dc.subject Coherent turbulent structures es_ES
dc.subject Machine learning es_ES
dc.subject Convolutional neural networks es_ES
dc.subject Deep learning es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Predicting Coherent Turbulent Structures via Deep Learning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fphy.2022.888832 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102256-B-I00/ES/TRANSFERENCIA DE CALOR EN FLUJOS DE PARED: CANALES Y CAPAS LIMITES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Schmekel, D.; Alcántara-Ávila, F.; Hoyas, S.; Vinuesa, R. (2022). Predicting Coherent Turbulent Structures via Deep Learning. Frontiers in Physics. 10:1-9. https://doi.org/10.3389/fphy.2022.888832 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fphy.2022.888832 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.identifier.eissn 2296-424X es_ES
dc.relation.pasarela S\481312 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem