Mostrar el registro sencillo del ítem
dc.contributor.author | Schmekel, D. | es_ES |
dc.contributor.author | Alcántara-Ávila, Francisco | es_ES |
dc.contributor.author | Hoyas, S. | es_ES |
dc.contributor.author | Vinuesa, R. | es_ES |
dc.date.accessioned | 2023-07-04T18:01:37Z | |
dc.date.available | 2023-07-04T18:01:37Z | |
dc.date.issued | 2022-04-13 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/194672 | |
dc.description.abstract | [EN] Turbulent flow is widespread in many applications, such as airplane wings or turbine blades. Such flow is highly chaotic and impossible to predict far into the future. Some regions exhibit a coherent physical behavior in turbulent flow, satisfying specific properties; these regions are denoted as coherent structures. This work considers structures connected with the Reynolds stresses, which are essential quantities for modeling and understanding turbulent flows. Deep-learning techniques have recently had promising results for modeling turbulence, and here we investigate their capabilities for modeling coherent structures. We use data from a direct numerical simulation (DNS) of a turbulent channel flow to train a convolutional neural network (CNN) and predict the number and volume of the coherent structures in the channel over time. Overall, the performance of the CNN model is very good, with a satisfactory agreement between the predicted geometrical properties of the structures and those of the reference DNS data. | es_ES |
dc.description.sponsorship | RV acknowledges the financial support by the Göran Gustafsson foundation. SH was funded by Contract Nos. RTI2018-102256- B-I00 of Ministerio de Ciencia, innovación y Universidades/ FEDER. Part of the analysis was carried out using computational resources provided by the Swedish National Infrastructure for Computing (SNIC). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media | es_ES |
dc.relation.ispartof | Frontiers in Physics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Turbulence | es_ES |
dc.subject | Coherent turbulent structures | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Convolutional neural networks | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.title | Predicting Coherent Turbulent Structures via Deep Learning | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fphy.2022.888832 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102256-B-I00/ES/TRANSFERENCIA DE CALOR EN FLUJOS DE PARED: CANALES Y CAPAS LIMITES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | Schmekel, D.; Alcántara-Ávila, F.; Hoyas, S.; Vinuesa, R. (2022). Predicting Coherent Turbulent Structures via Deep Learning. Frontiers in Physics. 10:1-9. https://doi.org/10.3389/fphy.2022.888832 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fphy.2022.888832 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.identifier.eissn | 2296-424X | es_ES |
dc.relation.pasarela | S\481312 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |