Mostrar el registro completo del ítem
Schmekel, D.; Alcántara-Ávila, F.; Hoyas, S.; Vinuesa, R. (2022). Predicting Coherent Turbulent Structures via Deep Learning. Frontiers in Physics. 10:1-9. https://doi.org/10.3389/fphy.2022.888832
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194672
Título: | Predicting Coherent Turbulent Structures via Deep Learning | |
Autor: | Schmekel, D. Alcántara-Ávila, Francisco Vinuesa, R. | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Turbulent flow is widespread in many applications, such as airplane wings or turbine blades. Such flow is highly chaotic and impossible to predict far into the future. Some regions exhibit a coherent physical behavior ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.3389/fphy.2022.888832 | |
Código del Proyecto: |
|
|
Agradecimientos: |
RV acknowledges the financial support by the Göran Gustafsson
foundation. SH was funded by Contract Nos. RTI2018-102256-
B-I00 of Ministerio de Ciencia, innovación y Universidades/
FEDER. Part of the analysis was carried ...[+]
|
|
Tipo: |
|