- -

vol2Brain: A New Online Pipeline for Whole Brain MRI Analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

vol2Brain: A New Online Pipeline for Whole Brain MRI Analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Manjón Herrera, José Vicente es_ES
dc.contributor.author Romero, José E. es_ES
dc.contributor.author Vivó, Roberto es_ES
dc.contributor.author Rubio Navarro, Gregorio es_ES
dc.contributor.author Aparici, Fernando es_ES
dc.contributor.author de la Iglesia-Vaya, Mariam es_ES
dc.contributor.author Coupé, Pierrick es_ES
dc.date.accessioned 2023-07-05T18:01:12Z
dc.date.available 2023-07-05T18:01:12Z
dc.date.issued 2022-05-24 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194700
dc.description.abstract [EN] Automatic and reliable quantitative tools for MR brain image analysis are a very valuable resource for both clinical and research environments. In the past few years, this field has experienced many advances with successful techniques based on label fusion and more recently deep learning. However, few of them have been specifically designed to provide a dense anatomical labeling at the multiscale level and to deal with brain anatomical alterations such as white matter lesions (WML). In this work, we present a fully automatic pipeline (vol2Brain) for whole brain segmentation and analysis, which densely labels (N > 100) the brain while being robust to the presence of WML. This new pipeline is an evolution of our previous volBrain pipeline that extends significantly the number of regions that can be analyzed. Our proposed method is based on a fast and multiscale multi-atlas label fusion technology with systematic error correction able to provide accurate volumetric information in a few minutes. We have deployed our new pipeline within our platform volBrain (), which has been already demonstrated to be an efficient and effective way to share our technology with the users worldwide. es_ES
dc.description.sponsorship This research was supported by the Spanish DPI2017-87743-R grant from the Ministerio de Economia, Industria y Competitividad of Spain. This work was benefited from the support of the project DeepvolBrain of the French National Research Agency (ANR-18-CE45-0013). This study was achieved within the context of the Laboratory of Excellence TRAIL ANR-10-LABX-57 for the BigDataBrain project. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Neuroinformatics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Segmentation es_ES
dc.subject Brain es_ES
dc.subject Analysis es_ES
dc.subject MRI es_ES
dc.subject Cloud es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title vol2Brain: A New Online Pipeline for Whole Brain MRI Analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fninf.2022.862805 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-87743-R/ES/DESARROLLO DE UNA PLATAFORMA ONLINE PARA EL ANALISIS ANATOMICO DEL CEREBRO TOLERANTE A LA PRESENCIA DE ALTERACIONES PATOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-18-CE45-0013/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-LABX-57/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Manjón Herrera, JV.; Romero, JE.; Vivó, R.; Rubio Navarro, G.; Aparici, F.; De La Iglesia-Vaya, M.; Coupé, P. (2022). vol2Brain: A New Online Pipeline for Whole Brain MRI Analysis. Frontiers in Neuroinformatics. 16:1-11. https://doi.org/10.3389/fninf.2022.862805 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fninf.2022.862805 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.identifier.eissn 1662-5196 es_ES
dc.identifier.pmid 35685943 es_ES
dc.identifier.pmcid PMC9171328 es_ES
dc.relation.pasarela S\484090 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
upv.costeAPC 3570 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem