Mostrar el registro sencillo del ítem
dc.contributor.author | Bonet Solves, José Antonio | es_ES |
dc.contributor.author | Lusky, Wolfgang | es_ES |
dc.contributor.author | Taskinen, Jari | es_ES |
dc.date.accessioned | 2023-07-11T18:01:26Z | |
dc.date.available | 2023-07-11T18:01:26Z | |
dc.date.issued | 2022-09-14 | es_ES |
dc.identifier.issn | 1072-3374 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/194823 | |
dc.description.abstract | [EN] We consider weighted Bergman spaces A^1_mu on the unit disc as well as the corresponding spaces of entire functions, defined using non-atomic Borel measures with radial symmetry. By extending the techniques from the case of reflexive Bergman spaces, we characterize the solid core of A^1_mu. Also, as a consequence of a characterization of solid A^1_mu-spaces, we show that, in the case of entire functions, there indeed exist solid A^1_mu-spaces. The second part of the article is restricted to the case of the unit disc and it contains a characterization of the solid hull of A^1_mu, when mu equals the weighted Lebesgue measure with the weight v. The results are based on the duality relation of the weighted A1- and H infinite-spaces, the validity of which requires the assumption that -log v belongs to the class W0, studied in a number of publications; moreover, v has to satisfy the condition (b), introduced by the authors. The exponentially decreasing weight v(z)=exp(-1/(1-|z|) provides an example satisfying both assumptions. | es_ES |
dc.description.sponsorship | Open Access funding provided by University of Helsinki including Helsinki University Central Hospital. The research of Bonet was partially supported by the project MCIN PID2020-119457GB-I00/AEI/10.13039/501100011033 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Journal of Mathematical Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Bergman space | es_ES |
dc.subject | Weighted L1-norm | es_ES |
dc.subject | Unit disc | es_ES |
dc.subject | Solid hull | es_ES |
dc.subject | Solid core | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | On solid cores and hulls of weighted Bergman spaces A^1_mu | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10958-022-05764-5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119457GB-I00/ES/METODOS DEL ANALISIS FUNCIONAL PARA LA TEORIA DE OPERADORES Y EL ANALISIS TIEMPO-FRECUENCIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//MTM2016-76647-P//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Arquitectura - Escola Tècnica Superior d'Arquitectura | es_ES |
dc.description.bibliographicCitation | Bonet Solves, JA.; Lusky, W.; Taskinen, J. (2022). On solid cores and hulls of weighted Bergman spaces A^1_mu. Journal of Mathematical Sciences. 266:239-250. https://doi.org/10.1007/s10958-022-05764-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10958-022-05764-5 | es_ES |
dc.description.upvformatpinicio | 239 | es_ES |
dc.description.upvformatpfin | 250 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 266 | es_ES |
dc.relation.pasarela | S\483360 | es_ES |
dc.contributor.funder | University of Helsinki | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | J. M. Anderson and A. L. Shields, Coefficient multipliers of Bloch functions, Trans. Amer. Math. Soc. 224 (1976), 255–265. | es_ES |
dc.description.references | J. Bonet and J. Taskinen, Solid hulls of weighted Banach spaces of entire functions, Rev. Mat. Iberoam. 34 (2018), no. 2, 593–608 | es_ES |
dc.description.references | J. Bonet, J. Taskinen: Solid hulls of weighted Banach spaces of analytic functions on the unit disc with exponential weights. Ann. Acan. Sci. Fenn. Math. 43 (2018), 521–530. | es_ES |
dc.description.references | J. Bonet, W. Lusky, J. Taskinen: Solid hulls and cores of weighted $$H^\infty$$-spaces. Rev. Mat. Complutense 31 (2018), 781–804. | es_ES |
dc.description.references | J. Bonet, W. Lusky, J. Taskinen, Solid cores and solid hulls of weighted Bergman spaces, Banach J. Math. Anal. 13 (2019), 468–485, | es_ES |
dc.description.references | J. Bonet, W. Lusky, J. Taskinen, Unbounded Bergman projections on weighted spaces with respect to exponential weights, to appear in Integral Eq. Operator Th. | es_ES |
dc.description.references | M. Buntinas, Products of sequence spaces, Analysis 7 (1987), 293–304. | es_ES |
dc.description.references | M. Buntinas, N. Tanović-Miller, Absolute Boundedness and Absolute Convergence in Sequence Spaces, Proc. Amer. Math. Soc. 111 (1991), No. 4, 967–979. | es_ES |
dc.description.references | P.L. Duren, Theory of $$H_p$$-spaces, Academic Press, New York and London, 1970. | es_ES |
dc.description.references | A. Harutyunyan, W.Lusky, On $$L_1-$$subspaces of holomorphic functions, Studia Math. 198 (2010), 157–175 | es_ES |
dc.description.references | Z. Hu, X. Lv, A. Schuster, Bergman spaces with exponential weights, J. Functional Anal. 276 (2019), 1402–1429. | es_ES |
dc.description.references | M. Jevtić, D. Vukotić, M. Arsenović, Taylor Coefficients and Coefficient Multipliers of Hardy and Bergman-Type Spaces, RSME Springer Series, Volume 2. Springer 2016. | es_ES |
dc.description.references | J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I, Springer, Berlin, 1986. | es_ES |
dc.description.references | W. Lusky, On the Fourier series of unbounded harmonic functions, J. Lond. Math. Soc. (2) 61 (2000), 568-580. | es_ES |
dc.description.references | W. Lusky, On the isomorphism classes of weighted spaces of harmonic and holomorphic functions, Studia Math. 175 (2006), 19–45. | es_ES |
dc.description.references | M. Pavlović, Function classes on the unit disc. An introduction, De Gruyter Studies in Mathematics, 52. De Gruyter, Berlin, 2014. | es_ES |
dc.description.references | P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Univ. press, Cambridge, 1991. | es_ES |
dc.description.references | A. Zygmund, Trigonometric series, 2nd rev. ed., Cambridge Univ. Press, New York, 1959. | es_ES |