Silva-Rodríguez, J.; Salvador Zuriaga, P.; Naranjo Ornedo, V.; Insa Franco, R. (2022). Supervised contrastive learning-guided prototypes on axle-box accelerations for railway crossing inspections. Expert Systems with Applications. 207:1-9. https://doi.org/10.1016/j.eswa.2022.117946
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/195075
Title:
|
Supervised contrastive learning-guided prototypes on axle-box accelerations for railway crossing inspections
|
Author:
|
Silva-Rodríguez, Julio
Salvador Zuriaga, Pablo
Naranjo Ornedo, Valeriana
Insa Franco, Ricardo
|
UPV Unit:
|
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports
|
Issued date:
|
|
Abstract:
|
[EN] Increasing demands on railway structures have led to a need for new cost-effective maintenance strategies in recent years. Current dynamic railway track monitoring systems are usually based on the analysis of axle-box ...[+]
[EN] Increasing demands on railway structures have led to a need for new cost-effective maintenance strategies in recent years. Current dynamic railway track monitoring systems are usually based on the analysis of axle-box accelerations to automatically detect track singularities and defects. These methods rely on hand-crafted feature extraction and classifiers for different tasks. However, the low performance shown in previous literature makes it necessary to complement these analyses with in-situ inspections. Very recent works have proposed the use of deep learning systems that allow extracting more generalizable features from time-frequency spectrograms. However, the lack of specific public domain datasets and the finite number of track singularities in a railway structure have limited the development of deep learning based systems. In this paper, we propose a method capable of outstanding in low-data scenarios. In particular, we explore the use of supervised contrastive learning to cluster class embeddings nearly in the encoder latent space, which is used during inference for prototypical distance-based class assignment. We provide comprehensive experiments demonstrating the performance of our method in comparison to previous literature for detecting worn-out crossings.
[-]
|
Subjects:
|
Dynamic railway surveying
,
Axle-box accelerations
,
Crossing wear detection
,
Deep learning
,
Supervised contrastive learning
|
Copyrigths:
|
Reconocimiento (by)
|
Source:
|
Expert Systems with Applications. (issn:
0957-4174
)
|
DOI:
|
10.1016/j.eswa.2022.117946
|
Publisher:
|
Elsevier
|
Publisher version:
|
https://doi.org/10.1016/j.eswa.2022.117946
|
Project ID:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-84317-R/ES/METODOS INTELIGENTES DE AUSCULTACION DINAMICA DE VIA EN BASE AL TRATAMIENTO DIGITAL DE IMAGENES/
info:eu-repo/grantAgreement/AEI//PRE2018-083443//AYUDA PARA CONTRATOS PREDOCTORALES PARA LA FORMACION DE DOCTORES-SILVA RODRIGUEZ, JULIO. PROYECTO: METODOS INTELIGENTES DE AUSCULTACION DINAMICA DE VIA EN BASE AL TRATAMIENTO DIGITAL DE IMAGENES/
|
Thanks:
|
This work was supported by the Spanish Ministry of Economy and Competitiveness through project TRA2017-84317-R-AR. J. Silva-Rodriguez work was also supported by the Spanish Government under FPI Grant PRE2018-083443
|
Type:
|
Artículo
|