- -

Supervised contrastive learning-guided prototypes on axle-box accelerations for railway crossing inspections

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Supervised contrastive learning-guided prototypes on axle-box accelerations for railway crossing inspections

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Silva-Rodríguez, Julio es_ES
dc.contributor.author Salvador Zuriaga, Pablo es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.contributor.author Insa Franco, Ricardo es_ES
dc.date.accessioned 2023-07-17T18:02:17Z
dc.date.available 2023-07-17T18:02:17Z
dc.date.issued 2022-11-30 es_ES
dc.identifier.issn 0957-4174 es_ES
dc.identifier.uri http://hdl.handle.net/10251/195075
dc.description.abstract [EN] Increasing demands on railway structures have led to a need for new cost-effective maintenance strategies in recent years. Current dynamic railway track monitoring systems are usually based on the analysis of axle-box accelerations to automatically detect track singularities and defects. These methods rely on hand-crafted feature extraction and classifiers for different tasks. However, the low performance shown in previous literature makes it necessary to complement these analyses with in-situ inspections. Very recent works have proposed the use of deep learning systems that allow extracting more generalizable features from time-frequency spectrograms. However, the lack of specific public domain datasets and the finite number of track singularities in a railway structure have limited the development of deep learning based systems. In this paper, we propose a method capable of outstanding in low-data scenarios. In particular, we explore the use of supervised contrastive learning to cluster class embeddings nearly in the encoder latent space, which is used during inference for prototypical distance-based class assignment. We provide comprehensive experiments demonstrating the performance of our method in comparison to previous literature for detecting worn-out crossings. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Economy and Competitiveness through project TRA2017-84317-R-AR. J. Silva-Rodriguez work was also supported by the Spanish Government under FPI Grant PRE2018-083443 es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Expert Systems with Applications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Dynamic railway surveying es_ES
dc.subject Axle-box accelerations es_ES
dc.subject Crossing wear detection es_ES
dc.subject Deep learning es_ES
dc.subject Supervised contrastive learning es_ES
dc.subject.classification INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Supervised contrastive learning-guided prototypes on axle-box accelerations for railway crossing inspections es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.eswa.2022.117946 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-84317-R/ES/METODOS INTELIGENTES DE AUSCULTACION DINAMICA DE VIA EN BASE AL TRATAMIENTO DIGITAL DE IMAGENES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PRE2018-083443//AYUDA PARA CONTRATOS PREDOCTORALES PARA LA FORMACION DE DOCTORES-SILVA RODRIGUEZ, JULIO. PROYECTO: METODOS INTELIGENTES DE AUSCULTACION DINAMICA DE VIA EN BASE AL TRATAMIENTO DIGITAL DE IMAGENES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.description.bibliographicCitation Silva-Rodríguez, J.; Salvador Zuriaga, P.; Naranjo Ornedo, V.; Insa Franco, R. (2022). Supervised contrastive learning-guided prototypes on axle-box accelerations for railway crossing inspections. Expert Systems with Applications. 207:1-9. https://doi.org/10.1016/j.eswa.2022.117946 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.eswa.2022.117946 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 207 es_ES
dc.relation.pasarela S\468397 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem