Mostrar el registro sencillo del ítem
dc.contributor.author | Silva-Rodríguez, Julio | es_ES |
dc.contributor.author | Salvador Zuriaga, Pablo | es_ES |
dc.contributor.author | Naranjo Ornedo, Valeriana | es_ES |
dc.contributor.author | Insa Franco, Ricardo | es_ES |
dc.date.accessioned | 2023-07-17T18:02:17Z | |
dc.date.available | 2023-07-17T18:02:17Z | |
dc.date.issued | 2022-11-30 | es_ES |
dc.identifier.issn | 0957-4174 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/195075 | |
dc.description.abstract | [EN] Increasing demands on railway structures have led to a need for new cost-effective maintenance strategies in recent years. Current dynamic railway track monitoring systems are usually based on the analysis of axle-box accelerations to automatically detect track singularities and defects. These methods rely on hand-crafted feature extraction and classifiers for different tasks. However, the low performance shown in previous literature makes it necessary to complement these analyses with in-situ inspections. Very recent works have proposed the use of deep learning systems that allow extracting more generalizable features from time-frequency spectrograms. However, the lack of specific public domain datasets and the finite number of track singularities in a railway structure have limited the development of deep learning based systems. In this paper, we propose a method capable of outstanding in low-data scenarios. In particular, we explore the use of supervised contrastive learning to cluster class embeddings nearly in the encoder latent space, which is used during inference for prototypical distance-based class assignment. We provide comprehensive experiments demonstrating the performance of our method in comparison to previous literature for detecting worn-out crossings. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministry of Economy and Competitiveness through project TRA2017-84317-R-AR. J. Silva-Rodriguez work was also supported by the Spanish Government under FPI Grant PRE2018-083443 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Expert Systems with Applications | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Dynamic railway surveying | es_ES |
dc.subject | Axle-box accelerations | es_ES |
dc.subject | Crossing wear detection | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Supervised contrastive learning | es_ES |
dc.subject.classification | INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES | es_ES |
dc.subject.classification | TEORÍA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Supervised contrastive learning-guided prototypes on axle-box accelerations for railway crossing inspections | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.eswa.2022.117946 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-84317-R/ES/METODOS INTELIGENTES DE AUSCULTACION DINAMICA DE VIA EN BASE AL TRATAMIENTO DIGITAL DE IMAGENES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PRE2018-083443//AYUDA PARA CONTRATOS PREDOCTORALES PARA LA FORMACION DE DOCTORES-SILVA RODRIGUEZ, JULIO. PROYECTO: METODOS INTELIGENTES DE AUSCULTACION DINAMICA DE VIA EN BASE AL TRATAMIENTO DIGITAL DE IMAGENES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports | es_ES |
dc.description.bibliographicCitation | Silva-Rodríguez, J.; Salvador Zuriaga, P.; Naranjo Ornedo, V.; Insa Franco, R. (2022). Supervised contrastive learning-guided prototypes on axle-box accelerations for railway crossing inspections. Expert Systems with Applications. 207:1-9. https://doi.org/10.1016/j.eswa.2022.117946 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.eswa.2022.117946 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 207 | es_ES |
dc.relation.pasarela | S\468397 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |