Mostrar el registro completo del ítem
Eivazi, H.; Le Clainche, S.; Hoyas, S.; Vinuesa, R. (2022). Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows. Expert Systems with Applications. 202:1-11. https://doi.org/10.1016/j.eswa.2022.117038
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/195079
Título: | Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows | |
Autor: | Eivazi, Hamidreza Le Clainche, Soledad Vinuesa, Ricardo | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Modal-decomposition techniques are computational frameworks based on data aimed at identifying a low-dimensional space for capturing dominant flow features: the so-called modes. We propose a deep probabilistic-neural-network ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1016/j.eswa.2022.117038 | |
Código del Proyecto: |
|
|
Agradecimientos: |
We acknowledge Alvaro Martinez for his contributions to this work. RV acknowledges the Goran Gustafsson foundation, Sweden for the financial support of this research. SH has been supported by project RTI2018-102256-B-I00 ...[+]
|
|
Tipo: |
|