- -

Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Eivazi, Hamidreza es_ES
dc.contributor.author Le Clainche, Soledad es_ES
dc.contributor.author Hoyas, S es_ES
dc.contributor.author Vinuesa, Ricardo es_ES
dc.date.accessioned 2023-07-17T18:02:25Z
dc.date.available 2023-07-17T18:02:25Z
dc.date.issued 2022-09-15 es_ES
dc.identifier.issn 0957-4174 es_ES
dc.identifier.uri http://hdl.handle.net/10251/195079
dc.description.abstract [EN] Modal-decomposition techniques are computational frameworks based on data aimed at identifying a low-dimensional space for capturing dominant flow features: the so-called modes. We propose a deep probabilistic-neural-network architecture for learning a minimal and near-orthogonal set of non-linear modes from high-fidelity turbulent-flow data useful for flow analysis, reduced-order modeling and flow control. Our approach is based on beta-variational autoencoders (beta-VAEs) and convolutional neural networks (CNNs), which enable extracting non-linear modes from multi-scale turbulent flows while encouraging the learning of independent latent variables and penalizing the size of the latent vector. Moreover, we introduce an algorithm for ordering VAE-based modes with respect to their contribution to the reconstruction. We apply this method for non-linear mode decomposition of the turbulent flow through a simplified urban environment, where the flow-field data is obtained based on well-resolved large-eddy simulations (LESs). We demonstrate that by constraining the shape of the latent space, it is possible to motivate the orthogonality and extract a set of parsimonious modes sufficient for high-quality reconstruction. Our results show the excellent performance of the method in the reconstruction against linear-theory-based decompositions, where the energy percentage captured by the proposed method from five modes is equal to 87.36% against 32.41% of the POD. Moreover, we compare our method with available AE-based models. We show the ability of our approach in the extraction of near-orthogonal modes with the determinant of the correlation matrix equal to 0.99, which may lead to interpretability. es_ES
dc.description.sponsorship We acknowledge Alvaro Martinez for his contributions to this work. RV acknowledges the Goran Gustafsson foundation, Sweden for the financial support of this research. SH has been supported by project RTI2018-102256-B-I00 of Mineco/FEDER. SLC acknowledges the support of the Spanish Ministry of Science and Innovation under the grant PID2020-114173RB-100. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Expert Systems with Applications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Non-linear mode decomposition es_ES
dc.subject Turbulent flows es_ES
dc.subject Variational autoencoders es_ES
dc.subject Convolutional neural networks es_ES
dc.subject Machine learning es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.eswa.2022.117038 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114173RB-I00/ES/NUEVAS HERRAMIENTAS Y MODELOS FIABLES PARA EL DISEÑO Y LA EVALUACION DE AERONAVES EFICIENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102256-B-I00/ES/TRANSFERENCIA DE CALOR EN FLUJOS DE PARED: CANALES Y CAPAS LIMITES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Eivazi, H.; Le Clainche, S.; Hoyas, S.; Vinuesa, R. (2022). Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows. Expert Systems with Applications. 202:1-11. https://doi.org/10.1016/j.eswa.2022.117038 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.eswa.2022.117038 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 202 es_ES
dc.relation.pasarela S\461925 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem