Mostrar el registro sencillo del ítem
dc.contributor.author | Eivazi, Hamidreza | es_ES |
dc.contributor.author | Le Clainche, Soledad | es_ES |
dc.contributor.author | Hoyas, S | es_ES |
dc.contributor.author | Vinuesa, Ricardo | es_ES |
dc.date.accessioned | 2023-07-17T18:02:25Z | |
dc.date.available | 2023-07-17T18:02:25Z | |
dc.date.issued | 2022-09-15 | es_ES |
dc.identifier.issn | 0957-4174 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/195079 | |
dc.description.abstract | [EN] Modal-decomposition techniques are computational frameworks based on data aimed at identifying a low-dimensional space for capturing dominant flow features: the so-called modes. We propose a deep probabilistic-neural-network architecture for learning a minimal and near-orthogonal set of non-linear modes from high-fidelity turbulent-flow data useful for flow analysis, reduced-order modeling and flow control. Our approach is based on beta-variational autoencoders (beta-VAEs) and convolutional neural networks (CNNs), which enable extracting non-linear modes from multi-scale turbulent flows while encouraging the learning of independent latent variables and penalizing the size of the latent vector. Moreover, we introduce an algorithm for ordering VAE-based modes with respect to their contribution to the reconstruction. We apply this method for non-linear mode decomposition of the turbulent flow through a simplified urban environment, where the flow-field data is obtained based on well-resolved large-eddy simulations (LESs). We demonstrate that by constraining the shape of the latent space, it is possible to motivate the orthogonality and extract a set of parsimonious modes sufficient for high-quality reconstruction. Our results show the excellent performance of the method in the reconstruction against linear-theory-based decompositions, where the energy percentage captured by the proposed method from five modes is equal to 87.36% against 32.41% of the POD. Moreover, we compare our method with available AE-based models. We show the ability of our approach in the extraction of near-orthogonal modes with the determinant of the correlation matrix equal to 0.99, which may lead to interpretability. | es_ES |
dc.description.sponsorship | We acknowledge Alvaro Martinez for his contributions to this work. RV acknowledges the Goran Gustafsson foundation, Sweden for the financial support of this research. SH has been supported by project RTI2018-102256-B-I00 of Mineco/FEDER. SLC acknowledges the support of the Spanish Ministry of Science and Innovation under the grant PID2020-114173RB-100. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Expert Systems with Applications | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Non-linear mode decomposition | es_ES |
dc.subject | Turbulent flows | es_ES |
dc.subject | Variational autoencoders | es_ES |
dc.subject | Convolutional neural networks | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.title | Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.eswa.2022.117038 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114173RB-I00/ES/NUEVAS HERRAMIENTAS Y MODELOS FIABLES PARA EL DISEÑO Y LA EVALUACION DE AERONAVES EFICIENTES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102256-B-I00/ES/TRANSFERENCIA DE CALOR EN FLUJOS DE PARED: CANALES Y CAPAS LIMITES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | Eivazi, H.; Le Clainche, S.; Hoyas, S.; Vinuesa, R. (2022). Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows. Expert Systems with Applications. 202:1-11. https://doi.org/10.1016/j.eswa.2022.117038 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.eswa.2022.117038 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 202 | es_ES |
dc.relation.pasarela | S\461925 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |