- -

Study and QTL mapping of reproductive and morphological traits implicated in the autofertility of faba bean

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Study and QTL mapping of reproductive and morphological traits implicated in the autofertility of faba bean

Mostrar el registro completo del ítem

Aguilar-Benitez, D.; Casimiro-Soriguer, I.; Ferrandiz Maestre, C.; Torres, AM. (2022). Study and QTL mapping of reproductive and morphological traits implicated in the autofertility of faba bean. BMC Plant Biology. 22(1):1-15. https://doi.org/10.1186/s12870-022-03499-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/195326

Ficheros en el ítem

Metadatos del ítem

Título: Study and QTL mapping of reproductive and morphological traits implicated in the autofertility of faba bean
Autor: Aguilar-Benitez, David Casimiro-Soriguer, Inés FERRANDIZ MAESTRE, CRISTINA Torres, Ana M.
Fecha difusión:
Resumen:
[EN] Autofertility describes the ability of faba bean flowers to self-fertilize thereby ensuring the productivity of this crop in the absence of pollinators or mechanical disturbance. In the legume crop faba bean (Vicia ...[+]
Palabras clave: Vicia faba , Autofertility , Pollen , Stigma , Flower morphology , Reproductive success
Derechos de uso: Reconocimiento (by)
Fuente:
BMC Plant Biology. (issn: 1471-2229 )
DOI: 10.1186/s12870-022-03499-8
Editorial:
Springer (Biomed Central Ltd.)
Versión del editor: https://doi.org/10.1186/s12870-022-03499-8
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PCI2019-103428/ES/DESARROLLO DE MEJORES PRACTICAS DE MEJORA Y NUEVAS VARIEDADES DE HABAS PARA IMPULSAR LA PRODUCCION NACIONAL DE PROTEINAS EN LA UNION EUROPEA/
info:eu-repo/grantAgreement/Junta de Andalucía//PP.AVA. AVA2019.030 /
info:eu-repo/grantAgreement/MINECO//RTA2017-00041/
Agradecimientos:
This research was supported by funding from projects ProFaba_SusCrop-ERA-NET (PCI2019-103428), RTA2017-00041 co-financed by ERDF and PP.AVA. AVA2019.030 by the Junta de Andalucia. DAB acknowledges his Ph.D. fellowship ...[+]
Tipo: Artículo

References

FAOSTAT. 2019. http://www.fao.org/faostat/en/#home. Accessed 20 Jan 2021.

Stoddard FL, Bond DA. The pollination requirements of the faba bean. Bee World. 1987;68:144–52.

Guen JL, Mesquida J, Morin G, Brunet F, Tasei JN, Carré S. Effect of insect pollination on abortion rate in faba bean. Fabis Newsletter. 1992;31:25-8. [+]
FAOSTAT. 2019. http://www.fao.org/faostat/en/#home. Accessed 20 Jan 2021.

Stoddard FL, Bond DA. The pollination requirements of the faba bean. Bee World. 1987;68:144–52.

Guen JL, Mesquida J, Morin G, Brunet F, Tasei JN, Carré S. Effect of insect pollination on abortion rate in faba bean. Fabis Newsletter. 1992;31:25-8.

Cunningham SA, Le Feuvre D. Significant yield benefits from honeybee pollination of faba bean (Vicia faba) assessed at field scale. Field Crops Res. 2013;149:269–75.

Bishop J, Jones HE, Lukac M, Potts SG. Insect pollination reduces yield loss following heat stress in faba bean (Vicia faba L.). Agric Ecosyst Environ. 2016;220:89–96.

Bond DA, Pope M. Factors affecting the proportions of cross-bred and selfed seed obtained from field bean (Vicia faba L.) crops. J Agric Sci. 1974;83:343–51.

Link W. Autofertility and rate of cross-fertilization: crucial characters for breeding synthetic varieties in faba beans (Vicia faba L.). Theor Appl Genet. 1990;79:713–7.

Suso MJ, Moreno MT. Variation in outcrossing rate and genetic structure on six cultivars of Vicia faba as affected by geographic location and year L. Plant Breeding. 1999;118:347–50.

Köpke U, Nemecek T. Ecological services of faba bean. Field Crops Res. 2010;115:217–33.

Drayner JM. Self- and cross-fertility in field beans (Vicia faba Linn.). J Agric Sci. 1959;53:387–403.

Adcock ME, Lawes DA. Self-fertility and the distribution of seed yield in Vicia faba L. Euphytica. 1976;25:89–96.

Robertson LD, El-Sherbeeny MH. Autofertility in a pure line faba bean (Vicia faba L.) germplasm collection. Genet Resour Crop Evol. 1995;42:157–63.

Link W, Ederer W, Metz P, Buiel H, Melchinger AE. Genotypic and environmental variation for degree of cross-fertilization in faba bean. Crop Sci. 1994;34:960–4.

Link W, Schill B, von Kittlitz E. Breeding for wide adaptation in faba bean. Euphytica. 1996;92:185–90.

Abdelmula AA, Link W, von Kittlitz E, Stelling D. Heterosis and inheritance of drought tolerance in faba bean, Vicia faba L. Plant Breeding. 1999;118:485–90.

Gasim S, Link W. Agronomic Performance and the Effect of Self-Fertilization on German Winter Beans. Journal of Central European Agriculture. 2007;8:121–7.

Maalouf F, Ahmed KS, Munzir K. The effect of mating system for developing combined resistance to chocolate spot and Ascochyta blight in faba bean. In: Proceedings of the 18th Eucarpia General Congress. Valencia: Universidad Politécnica de Valencia; 2008. p. 416.

Bartomeus I, Potts SG, Steffan-Dewenter I, Vaissière BE, Woyciechowski M, Krewenka KM, et al. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ. 2014;2:e328.

Kambal AE, Bond DA, Toynbee-Clarke G. A study on the pollination mechanism in field beans (Vicia faba L.). J Agric Sci. 1976;87:519.

Torres AM, Moreno MT, Cubero JI. Genetics of Six Components of Autofertility in Vicia faba. Plant Breeding. 1993;110:220–8.

Rowlands DG. Fertility studies in the broad bean (Vicia faba L.). Heredity. 1964;19:271–7.

Stoddard FL. Pollination and fertilization in commercial crops of field beans (Vicia faba L.). J Agric Sci. 1986;106:89–97.

Puspitasari W. Association analyses to genetically study reproduction and seed quality features of faba bean (Vicia faba L.). Doctoral dissertation. Niedersächsische Staats-und Universitätsbibliothek, Georg-August-Universität Göttingen; 2017.

Suso MJ, Maalouf F. Direct and correlated responses to upward and downward selection for outcrossing in Vicia faba. Field Crops Res. 2010;116:116–26.

Suso MJ, del Río R. Faba bean gene-pools development for low-input agriculture: understanding early stages of natural selection. Euphytica. 2014;196:77–93.

Chen W, Stoddard FL, Baldwin TC. Developmental Regulation of Mannan, Arabinogalactan-Protein, and Pectic Epitopes in Pistils of Vicia faba (Faba Bean). Int J Plant Sci. 2006;167:919–32.

Chen W. Pollination, Fertilization and Floral Traits Co-Segregating with Autofertility in Faba Bean. Journal of New Seeds. 2009;10:14–30.

Lord EM, Heslop-Harrison Y. Pollen-Stigma Interaction in the Leguminosae: Stigma Organization and the Breeding System in Vicia faba L. Ann Bot. 1984;54:827–36.

Bishop J, Potts SG, Jones HE. Susceptibility of Faba Bean (Vicia faba L.) to Heat Stress During Floral Development and Anthesis. J Agro Crop Sci. 2016;202:508–17.

Stoddard FL. Climate change can affect crop pollination in unexpected ways. J Exp Bot. 2017;68:1819–21.

Poulsen MH, Martin A. A reproductive tetraploid Vicia faba L. Hereditas. 1977;87:123–6.

IPCC. In: Core Writing Team, Pachauri R.K., Reisinger A, editors. Climate Change 2007: Synthesis Report. Contribution of Working Groups I,II and III to the Fourth Assessment Report of the Intergovernmental Panel onClimate Change. Geneva, Switzerland: IPCC; 2007. p. 104.

Hedhly A, Hormaza JI, Herrero M. Global warming and sexual plant reproduction. Trends Plant Sci. 2009;14:30–6.

Porter JR, Xie L, Challinor AJ, Cochrane K, Howden SM, Iqbal MM, et al. Chapter 7. Food Security and Food Production Systems. In: Climate Change 2014: Impacts, Adaptation and Vulnerability. Switzerland: Working Group IIContribution to the IPCC 5th Assessment Report; 2014.

Settele J, Bishop J, Potts SG. Climate change impacts on pollination. Nat Plants. 2016;2:16092.

Memmott J, Craze PG, Waser NM, Price MV. Global warming and the disruption of plant-pollinator interactions. Ecol Lett. 2007;10:710–7.

Rasmont P, Franzen M, Lecocq T, Harpke A, Roberts S, Biesmeijer K, et al. Climatic risk and distribution atlas of european bumblebees. BR. 2015;10:1–236.

Bishop J, Garratt MPD, Breeze TD. Yield benefits of additional pollination to faba bean vary with cultivar, scale, yield parameter and experimental method. Sci Rep. 2020;10:2102.

Bailes EJ, Pattrick JG, Glover BJ. An analysis of the energetic reward offered by field bean (Vicia faba) flowers: Nectar, pollen, and operative force. Ecol Evol. 2018;8:3161–71.

Kurkina YN, Ngo Thi Ziem Kieu, Kolesnikov DA, Maradudina ON, Lazarev AV. Analysis of the ultrastructure of pollen grains and seeds to identify plant materials. Eur J Biosci. 2020;14:1489-94.

Sjödin JAN. Induced asynaptic mutants in Vicia faba L. Hereditas. 1970;66:215–32.

Singhal VK, Kaur M, Kumar HP, Gupta RC. High Pollen Sterility and 2n Pollen Grains in an Asynaptic 4x Cytotype (2n = 48) of Solanum nigrum L. Cytologia (Tokyo). 2012;77:333–42.

Chen W, Stoddard F, Baldwin TC. Variable pressure scanning electron microscopy of Vicia faba stigmatic papillae. Microsc Anal. 2011;25(7):21-2.

Paul C, Gates P, Harris N, Boulter D. Asynchronous sexual development determines the breeding system in field beans. Nature. 1978;275:54–5.

Suso MJ, Moreno MT. Floral traits variation in Vicia faba L. with special reference to predictors of allogamy. In: Proceedings of the 5th European Conference on Grain Legumes, Dijon, France, 2004. pp. 116

O’Neill SD. Pollination regulation of flower development. Annu Rev Plant Physiol Plant Mol Biol. 1997;48:547–74.

Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, et al. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell. 1998;10:1321–32.

Buschmann H, Hauptmann M, Niessing D, Lloyd CW, Schäffner AR. Helical growth of the Arabidopsis mutant tortifolia2 does not depend on cell division patterns but involves handed twisting of isolated cells. Plant Cell. 2009;21:2090–106.

Rejón JD, Delalande F, Schaeffer-Reiss C, Carapito C, Zienkiewicz K, de Dios Alché J, et al. Proteomics profiling reveals novel proteins and functions of the plant stigma exudate. J Exp Bot. 2013;64:5695–705.

Goujon T, Sibout R, Pollet B, Maba B, Nussaume L, Bechtold N, et al. A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters. Plant Mol Biol. 2003;51:973–89.

Creff A, Sormani R, Desnos T. The two Arabidopsis RPS6 genes, encoding for cytoplasmic ribosomal proteins S6, are functionally equivalent. Plant Mol Biol. 2010;73:533–46.

Niewiadomski P, Knappe S, Geimer S, Fischer K, Schulz B, Unte US, et al. The Arabidopsis plastidic glucose 6-phosphate/phosphate translocator GPT1 is essential for pollen maturation and embryo sac development. Plant Cell. 2005;17:760–75.

Zheng Y, Deng X, Qu A, Zhang M, Tao Y, Yang L, et al. Regulation of pollen lipid body biogenesis by MAP kinases and downstream WRKY transcription factors in Arabidopsis. PLoS Genet. 2018;14:e1007880.

Bárány I, Fadón B, Risueño MC, Testillano PS. Cell wall components and pectin esterification levels as markers of proliferation and differentiation events during pollen development and pollen embryogenesis in Capsicum annuum L. J Exp Bot. 2010;61:1159–75.

Bethke G, Grundman RE, Sreekanta S, Truman W, Katagiri F, Glazebrook J. Arabidopsis PECTIN METHYLESTERASEs contribute to immunity against Pseudomonas syringae. Plant Physiol. 2014;164:1093–107.

Cao D, Cheng H, Wu W, Soo HM, Peng J. Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis. Plant Physiol. 2006;142:509–25.

Deuschle K, Funck D, Forlani G, Stransky H, Biehl A, Leister D, et al. The role of [Delta]1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell. 2004;16:3413–25.

Rai A, Umashankar S, Rai M, Kiat LB, Bing JAS, Swarup S. Coordinate regulation of metabolite glycosylation and stress hormone biosynthesis by TT8 in arabidopsis. Plant Physiol. 2016;171:2499–515.

Tsugeki R, Ditengou FA, Sumi Y, Teale W, Palme K, Okada K. NO VEIN mediates auxin-dependent specification and patterning in the Arabidopsis embryo, shoot, and root. Plant Cell. 2009;21:3133–51.

Maleckova E, Brilhaus D, Wrobel TJ, Weber APM. Transcript and metabolite changes during the early phase of abscisic acid-mediated induction of crassulacean acid metabolism in Talinum triangulare. J Exp Bot. 2019;70:6581–96.

Wang Z, Li N, Jiang S, Gonzalez N, Huang X, Wang Y, et al. SCF(SAP) controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana. Nat Commun. 2016;7:11192.

Cruz-Izquierdo S, Avila CM, Satovic Z, Palomino C, Gutierrez N, Ellwood SR, et al. Comparative genomics to bridge Vicia faba with model and closely-related legume species: stability of QTLs for flowering and yield-related traits. Theor Appl Genet. 2012;125:1767–82.

Aguilar-Benitez D, Casimiro-Soriguer I, Torres AM. Linkage mapping and QTL analysis of flowering time in faba bean. Sci Rep. 2021;11:13716

Aguilar-Benitez D, Casimiro-Soriguer I, Torres AM. First approach to pod dehiscence in faba bean: genetic and histological analyses. Sci Rep. 2020;10:17678.

Cubero JI, Suso M-J. Primitive and modern forms of Vicia faba. Die Kulturpflanze. 1981;29:137–45.

R Development Core Team. R: a language and environment for statistical computing. Computer software. Vienna: R Foundation for Statistical Computing; 2018.

Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.

Crawley MJ. Proportion Data. In: The R Book. Hoboken, NJ: John Wiley &Sons Ltd. 2007. p. 569–92.

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

van Ooijen JW. MapQTL ® 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma BV. Wageningen: 2004.

Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989;121:185–99.

van Ooijen JW. Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet. 1992;84:803–11.

Jansen RC. Interval mapping of multiple quantitative trait loci. Genetics. 1993;135:205–11.

Jansen RC. Controlling the type I and type II errors in mapping quantitative trait loci. Genetics. 1994;138:871–81.

Jansen RC, Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994;136:1447–55.

Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics. 1994;138:963–71.

Voorrips RE. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered. 2002;93:77–8.

Z. Wang, N. Li, S. Jiang, N. Gonzalez, X. Huang, Y. Wang, D. Inzé, Y. Li, SCF(SAP) controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana., Nat. Commun. 7 (2016) 11192. https://doi.org/10.1038/ncomms11192.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem