- -

Study and QTL mapping of reproductive and morphological traits implicated in the autofertility of faba bean

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Study and QTL mapping of reproductive and morphological traits implicated in the autofertility of faba bean

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aguilar-Benitez, David es_ES
dc.contributor.author Casimiro-Soriguer, Inés es_ES
dc.contributor.author FERRANDIZ MAESTRE, CRISTINA es_ES
dc.contributor.author Torres, Ana M. es_ES
dc.date.accessioned 2023-07-21T18:05:02Z
dc.date.available 2023-07-21T18:05:02Z
dc.date.issued 2022-04-06 es_ES
dc.identifier.issn 1471-2229 es_ES
dc.identifier.uri http://hdl.handle.net/10251/195326
dc.description.abstract [EN] Autofertility describes the ability of faba bean flowers to self-fertilize thereby ensuring the productivity of this crop in the absence of pollinators or mechanical disturbance. In the legume crop faba bean (Vicia faba L.), lack of autofertility in a context of insufficient pollination can lead to a severe decrease in grain yield. Here we performed the first QTL analysis aimed at identifying the genomic regions controlling autofertility in this crop. We combined pod and seed setting scores from a recombinant inbred population (RIL) segregating for autofertility in different environments and years with measurements of morphological floral traits and pollen production and viability. This approach revealed 19 QTLs co-localizing in six genomic regions. Extensive co-localization was evident for various floral features whose QTLs clustered in chrs. I, II and V, while other QTLs in chrs. III, IV and VI revealed co-localization of flower characteristics and pod and seed set data. The percentage of phenotypic variation explained by the QTLs ranged from 8.9 for style length to 25.7 for stigma angle. In the three QTLs explaining the highest phenotypic variation (R-2 > 20), the marker alleles derived from the autofertile line Vf27. We further inspected positional candidates identified by these QTLs which represent a valuable resource for further validation. Our results advance the understanding of autofertility in faba bean and will aid the identification of responsible genes for genomic-assisted breeding in this crop. es_ES
dc.description.sponsorship This research was supported by funding from projects ProFaba_SusCrop-ERA-NET (PCI2019-103428), RTA2017-00041 co-financed by ERDF and PP.AVA. AVA2019.030 by the Junta de Andalucia. DAB acknowledges his Ph.D. fellowship INIA-CCAA and IC-S her PhD grant awarded by the Andalusian Plan of Research, Development and Innovation (PAIDI 2020) co-financed by the EU through the European Social Fund of Andalusia 2014-2020. es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof BMC Plant Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Vicia faba es_ES
dc.subject Autofertility es_ES
dc.subject Pollen es_ES
dc.subject Stigma es_ES
dc.subject Flower morphology es_ES
dc.subject Reproductive success es_ES
dc.title Study and QTL mapping of reproductive and morphological traits implicated in the autofertility of faba bean es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12870-022-03499-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PCI2019-103428/ES/DESARROLLO DE MEJORES PRACTICAS DE MEJORA Y NUEVAS VARIEDADES DE HABAS PARA IMPULSAR LA PRODUCCION NACIONAL DE PROTEINAS EN LA UNION EUROPEA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Andalucía//PP.AVA. AVA2019.030 / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2017-00041/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Aguilar-Benitez, D.; Casimiro-Soriguer, I.; Ferrandiz Maestre, C.; Torres, AM. (2022). Study and QTL mapping of reproductive and morphological traits implicated in the autofertility of faba bean. BMC Plant Biology. 22(1):1-15. https://doi.org/10.1186/s12870-022-03499-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12870-022-03499-8 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 35387612 es_ES
dc.identifier.pmcid PMC8985305 es_ES
dc.relation.pasarela S\487289 es_ES
dc.contributor.funder Junta de Andalucía es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria es_ES
dc.description.references FAOSTAT. 2019. http://www.fao.org/faostat/en/#home. Accessed 20 Jan 2021. es_ES
dc.description.references Stoddard FL, Bond DA. The pollination requirements of the faba bean. Bee World. 1987;68:144–52. es_ES
dc.description.references Guen JL, Mesquida J, Morin G, Brunet F, Tasei JN, Carré S. Effect of insect pollination on abortion rate in faba bean. Fabis Newsletter. 1992;31:25-8. es_ES
dc.description.references Cunningham SA, Le Feuvre D. Significant yield benefits from honeybee pollination of faba bean (Vicia faba) assessed at field scale. Field Crops Res. 2013;149:269–75. es_ES
dc.description.references Bishop J, Jones HE, Lukac M, Potts SG. Insect pollination reduces yield loss following heat stress in faba bean (Vicia faba L.). Agric Ecosyst Environ. 2016;220:89–96. es_ES
dc.description.references Bond DA, Pope M. Factors affecting the proportions of cross-bred and selfed seed obtained from field bean (Vicia faba L.) crops. J Agric Sci. 1974;83:343–51. es_ES
dc.description.references Link W. Autofertility and rate of cross-fertilization: crucial characters for breeding synthetic varieties in faba beans (Vicia faba L.). Theor Appl Genet. 1990;79:713–7. es_ES
dc.description.references Suso MJ, Moreno MT. Variation in outcrossing rate and genetic structure on six cultivars of Vicia faba as affected by geographic location and year L. Plant Breeding. 1999;118:347–50. es_ES
dc.description.references Köpke U, Nemecek T. Ecological services of faba bean. Field Crops Res. 2010;115:217–33. es_ES
dc.description.references Drayner JM. Self- and cross-fertility in field beans (Vicia faba Linn.). J Agric Sci. 1959;53:387–403. es_ES
dc.description.references Adcock ME, Lawes DA. Self-fertility and the distribution of seed yield in Vicia faba L. Euphytica. 1976;25:89–96. es_ES
dc.description.references Robertson LD, El-Sherbeeny MH. Autofertility in a pure line faba bean (Vicia faba L.) germplasm collection. Genet Resour Crop Evol. 1995;42:157–63. es_ES
dc.description.references Link W, Ederer W, Metz P, Buiel H, Melchinger AE. Genotypic and environmental variation for degree of cross-fertilization in faba bean. Crop Sci. 1994;34:960–4. es_ES
dc.description.references Link W, Schill B, von Kittlitz E. Breeding for wide adaptation in faba bean. Euphytica. 1996;92:185–90. es_ES
dc.description.references Abdelmula AA, Link W, von Kittlitz E, Stelling D. Heterosis and inheritance of drought tolerance in faba bean, Vicia faba L. Plant Breeding. 1999;118:485–90. es_ES
dc.description.references Gasim S, Link W. Agronomic Performance and the Effect of Self-Fertilization on German Winter Beans. Journal of Central European Agriculture. 2007;8:121–7. es_ES
dc.description.references Maalouf F, Ahmed KS, Munzir K. The effect of mating system for developing combined resistance to chocolate spot and Ascochyta blight in faba bean. In: Proceedings of the 18th Eucarpia General Congress. Valencia: Universidad Politécnica de Valencia; 2008. p. 416. es_ES
dc.description.references Bartomeus I, Potts SG, Steffan-Dewenter I, Vaissière BE, Woyciechowski M, Krewenka KM, et al. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ. 2014;2:e328. es_ES
dc.description.references Kambal AE, Bond DA, Toynbee-Clarke G. A study on the pollination mechanism in field beans (Vicia faba L.). J Agric Sci. 1976;87:519. es_ES
dc.description.references Torres AM, Moreno MT, Cubero JI. Genetics of Six Components of Autofertility in Vicia faba. Plant Breeding. 1993;110:220–8. es_ES
dc.description.references Rowlands DG. Fertility studies in the broad bean (Vicia faba L.). Heredity. 1964;19:271–7. es_ES
dc.description.references Stoddard FL. Pollination and fertilization in commercial crops of field beans (Vicia faba L.). J Agric Sci. 1986;106:89–97. es_ES
dc.description.references Puspitasari W. Association analyses to genetically study reproduction and seed quality features of faba bean (Vicia faba L.). Doctoral dissertation. Niedersächsische Staats-und Universitätsbibliothek, Georg-August-Universität Göttingen; 2017. es_ES
dc.description.references Suso MJ, Maalouf F. Direct and correlated responses to upward and downward selection for outcrossing in Vicia faba. Field Crops Res. 2010;116:116–26. es_ES
dc.description.references Suso MJ, del Río R. Faba bean gene-pools development for low-input agriculture: understanding early stages of natural selection. Euphytica. 2014;196:77–93. es_ES
dc.description.references Chen W, Stoddard FL, Baldwin TC. Developmental Regulation of Mannan, Arabinogalactan-Protein, and Pectic Epitopes in Pistils of Vicia faba (Faba Bean). Int J Plant Sci. 2006;167:919–32. es_ES
dc.description.references Chen W. Pollination, Fertilization and Floral Traits Co-Segregating with Autofertility in Faba Bean. Journal of New Seeds. 2009;10:14–30. es_ES
dc.description.references Lord EM, Heslop-Harrison Y. Pollen-Stigma Interaction in the Leguminosae: Stigma Organization and the Breeding System in Vicia faba L. Ann Bot. 1984;54:827–36. es_ES
dc.description.references Bishop J, Potts SG, Jones HE. Susceptibility of Faba Bean (Vicia faba L.) to Heat Stress During Floral Development and Anthesis. J Agro Crop Sci. 2016;202:508–17. es_ES
dc.description.references Stoddard FL. Climate change can affect crop pollination in unexpected ways. J Exp Bot. 2017;68:1819–21. es_ES
dc.description.references Poulsen MH, Martin A. A reproductive tetraploid Vicia faba L. Hereditas. 1977;87:123–6. es_ES
dc.description.references IPCC. In: Core Writing Team, Pachauri R.K., Reisinger A, editors. Climate Change 2007: Synthesis Report. Contribution of Working Groups I,II and III to the Fourth Assessment Report of the Intergovernmental Panel onClimate Change. Geneva, Switzerland: IPCC; 2007. p. 104. es_ES
dc.description.references Hedhly A, Hormaza JI, Herrero M. Global warming and sexual plant reproduction. Trends Plant Sci. 2009;14:30–6. es_ES
dc.description.references Porter JR, Xie L, Challinor AJ, Cochrane K, Howden SM, Iqbal MM, et al. Chapter 7. Food Security and Food Production Systems. In: Climate Change 2014: Impacts, Adaptation and Vulnerability. Switzerland: Working Group IIContribution to the IPCC 5th Assessment Report; 2014. es_ES
dc.description.references Settele J, Bishop J, Potts SG. Climate change impacts on pollination. Nat Plants. 2016;2:16092. es_ES
dc.description.references Memmott J, Craze PG, Waser NM, Price MV. Global warming and the disruption of plant-pollinator interactions. Ecol Lett. 2007;10:710–7. es_ES
dc.description.references Rasmont P, Franzen M, Lecocq T, Harpke A, Roberts S, Biesmeijer K, et al. Climatic risk and distribution atlas of european bumblebees. BR. 2015;10:1–236. es_ES
dc.description.references Bishop J, Garratt MPD, Breeze TD. Yield benefits of additional pollination to faba bean vary with cultivar, scale, yield parameter and experimental method. Sci Rep. 2020;10:2102. es_ES
dc.description.references Bailes EJ, Pattrick JG, Glover BJ. An analysis of the energetic reward offered by field bean (Vicia faba) flowers: Nectar, pollen, and operative force. Ecol Evol. 2018;8:3161–71. es_ES
dc.description.references Kurkina YN, Ngo Thi Ziem Kieu, Kolesnikov DA, Maradudina ON, Lazarev AV. Analysis of the ultrastructure of pollen grains and seeds to identify plant materials. Eur J Biosci. 2020;14:1489-94. es_ES
dc.description.references Sjödin JAN. Induced asynaptic mutants in Vicia faba L. Hereditas. 1970;66:215–32. es_ES
dc.description.references Singhal VK, Kaur M, Kumar HP, Gupta RC. High Pollen Sterility and 2n Pollen Grains in an Asynaptic 4x Cytotype (2n = 48) of Solanum nigrum L. Cytologia (Tokyo). 2012;77:333–42. es_ES
dc.description.references Chen W, Stoddard F, Baldwin TC. Variable pressure scanning electron microscopy of Vicia faba stigmatic papillae. Microsc Anal. 2011;25(7):21-2. es_ES
dc.description.references Paul C, Gates P, Harris N, Boulter D. Asynchronous sexual development determines the breeding system in field beans. Nature. 1978;275:54–5. es_ES
dc.description.references Suso MJ, Moreno MT. Floral traits variation in Vicia faba L. with special reference to predictors of allogamy. In: Proceedings of the 5th European Conference on Grain Legumes, Dijon, France, 2004. pp. 116 es_ES
dc.description.references O’Neill SD. Pollination regulation of flower development. Annu Rev Plant Physiol Plant Mol Biol. 1997;48:547–74. es_ES
dc.description.references Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, et al. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell. 1998;10:1321–32. es_ES
dc.description.references Buschmann H, Hauptmann M, Niessing D, Lloyd CW, Schäffner AR. Helical growth of the Arabidopsis mutant tortifolia2 does not depend on cell division patterns but involves handed twisting of isolated cells. Plant Cell. 2009;21:2090–106. es_ES
dc.description.references Rejón JD, Delalande F, Schaeffer-Reiss C, Carapito C, Zienkiewicz K, de Dios Alché J, et al. Proteomics profiling reveals novel proteins and functions of the plant stigma exudate. J Exp Bot. 2013;64:5695–705. es_ES
dc.description.references Goujon T, Sibout R, Pollet B, Maba B, Nussaume L, Bechtold N, et al. A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters. Plant Mol Biol. 2003;51:973–89. es_ES
dc.description.references Creff A, Sormani R, Desnos T. The two Arabidopsis RPS6 genes, encoding for cytoplasmic ribosomal proteins S6, are functionally equivalent. Plant Mol Biol. 2010;73:533–46. es_ES
dc.description.references Niewiadomski P, Knappe S, Geimer S, Fischer K, Schulz B, Unte US, et al. The Arabidopsis plastidic glucose 6-phosphate/phosphate translocator GPT1 is essential for pollen maturation and embryo sac development. Plant Cell. 2005;17:760–75. es_ES
dc.description.references Zheng Y, Deng X, Qu A, Zhang M, Tao Y, Yang L, et al. Regulation of pollen lipid body biogenesis by MAP kinases and downstream WRKY transcription factors in Arabidopsis. PLoS Genet. 2018;14:e1007880. es_ES
dc.description.references Bárány I, Fadón B, Risueño MC, Testillano PS. Cell wall components and pectin esterification levels as markers of proliferation and differentiation events during pollen development and pollen embryogenesis in Capsicum annuum L. J Exp Bot. 2010;61:1159–75. es_ES
dc.description.references Bethke G, Grundman RE, Sreekanta S, Truman W, Katagiri F, Glazebrook J. Arabidopsis PECTIN METHYLESTERASEs contribute to immunity against Pseudomonas syringae. Plant Physiol. 2014;164:1093–107. es_ES
dc.description.references Cao D, Cheng H, Wu W, Soo HM, Peng J. Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis. Plant Physiol. 2006;142:509–25. es_ES
dc.description.references Deuschle K, Funck D, Forlani G, Stransky H, Biehl A, Leister D, et al. The role of [Delta]1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell. 2004;16:3413–25. es_ES
dc.description.references Rai A, Umashankar S, Rai M, Kiat LB, Bing JAS, Swarup S. Coordinate regulation of metabolite glycosylation and stress hormone biosynthesis by TT8 in arabidopsis. Plant Physiol. 2016;171:2499–515. es_ES
dc.description.references Tsugeki R, Ditengou FA, Sumi Y, Teale W, Palme K, Okada K. NO VEIN mediates auxin-dependent specification and patterning in the Arabidopsis embryo, shoot, and root. Plant Cell. 2009;21:3133–51. es_ES
dc.description.references Maleckova E, Brilhaus D, Wrobel TJ, Weber APM. Transcript and metabolite changes during the early phase of abscisic acid-mediated induction of crassulacean acid metabolism in Talinum triangulare. J Exp Bot. 2019;70:6581–96. es_ES
dc.description.references Wang Z, Li N, Jiang S, Gonzalez N, Huang X, Wang Y, et al. SCF(SAP) controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana. Nat Commun. 2016;7:11192. es_ES
dc.description.references Cruz-Izquierdo S, Avila CM, Satovic Z, Palomino C, Gutierrez N, Ellwood SR, et al. Comparative genomics to bridge Vicia faba with model and closely-related legume species: stability of QTLs for flowering and yield-related traits. Theor Appl Genet. 2012;125:1767–82. es_ES
dc.description.references Aguilar-Benitez D, Casimiro-Soriguer I, Torres AM. Linkage mapping and QTL analysis of flowering time in faba bean. Sci Rep. 2021;11:13716 es_ES
dc.description.references Aguilar-Benitez D, Casimiro-Soriguer I, Torres AM. First approach to pod dehiscence in faba bean: genetic and histological analyses. Sci Rep. 2020;10:17678. es_ES
dc.description.references Cubero JI, Suso M-J. Primitive and modern forms of Vicia faba. Die Kulturpflanze. 1981;29:137–45. es_ES
dc.description.references R Development Core Team. R: a language and environment for statistical computing. Computer software. Vienna: R Foundation for Statistical Computing; 2018. es_ES
dc.description.references Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48. es_ES
dc.description.references Crawley MJ. Proportion Data. In: The R Book. Hoboken, NJ: John Wiley &Sons Ltd. 2007. p. 569–92. es_ES
dc.description.references Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5. es_ES
dc.description.references van Ooijen JW. MapQTL ® 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma BV. Wageningen: 2004. es_ES
dc.description.references Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989;121:185–99. es_ES
dc.description.references van Ooijen JW. Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet. 1992;84:803–11. es_ES
dc.description.references Jansen RC. Interval mapping of multiple quantitative trait loci. Genetics. 1993;135:205–11. es_ES
dc.description.references Jansen RC. Controlling the type I and type II errors in mapping quantitative trait loci. Genetics. 1994;138:871–81. es_ES
dc.description.references Jansen RC, Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994;136:1447–55. es_ES
dc.description.references Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics. 1994;138:963–71. es_ES
dc.description.references Voorrips RE. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered. 2002;93:77–8. es_ES
dc.description.references Z. Wang, N. Li, S. Jiang, N. Gonzalez, X. Huang, Y. Wang, D. Inzé, Y. Li, SCF(SAP) controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana., Nat. Commun. 7 (2016) 11192. https://doi.org/10.1038/ncomms11192. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem