- -

SlS5H silencing reveals specific pathogen-triggered salicylic acid metabolism in tomato

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

SlS5H silencing reveals specific pathogen-triggered salicylic acid metabolism in tomato

Mostrar el registro completo del ítem

Payá C.; Minguillón, S.; Hernández, M.; Miguel, S.; Campos, L.; Rodrigo Bravo, I.; Belles Albert, JM.... (2022). SlS5H silencing reveals specific pathogen-triggered salicylic acid metabolism in tomato. BMC Plant Biology. 22(1):1-22. https://doi.org/10.1186/s12870-022-03939-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/195328

Ficheros en el ítem

Metadatos del ítem

Título: SlS5H silencing reveals specific pathogen-triggered salicylic acid metabolism in tomato
Autor: Payá C. Minguillón, S. Hernández, M. Miguel, S.M. Campos, L. Rodrigo Bravo, Ismael Belles Albert, José Mª López-Gresa, María Pilar Lisón, Purificación
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Fecha difusión:
Resumen:
[EN] Background Salicylic acid (SA) is a major plant hormone that mediates the defence pathway against pathogens. SA accumulates in highly variable amounts depending on the plant-pathogen system, and several enzyme activities ...[+]
Palabras clave: Defence , Metabolomics , Pathogen , Phenolics , Plant stress , Salicylic acid , Tomato
Derechos de uso: Reconocimiento (by)
Fuente:
BMC Plant Biology. (issn: 1471-2229 )
DOI: 10.1186/s12870-022-03939-5
Editorial:
Springer (Biomed Central Ltd.)
Versión del editor: https://doi.org/10.1186/s12870-022-03939-5
Coste APC: 2800
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116765RB-I00/ES/SEÑALIZACION DE LA RESPUESTA DEFENSIVA DE PLANTAS DE TOMATE FRENTE A BACTERIA: COMUNICACION INTRA- E INTER-PLANTA/
info:eu-repo/grantAgreement/GVA//AICO%2F2017%2F048//GENERACION DE PLANTAS TRANSGENICAS DE TOMATE EVOCS INDUCTORAS DE RESISTENCIA EN CULTIVOS VECINOS/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2021%2F056/
info:eu-repo/grantAgreement/GVA//ACIF%2F2019%2F187/
Agradecimientos:
This work was supported by Grant PID2020-116765RB-I00 funded by MCIN/AEI/https://doi.org/10.13039/501100011033 and Grant AICO/2017/048 from the Generalitat Valenciana. Work in the lab is also supported by grant PROMETEU/2021/056 ...[+]
Tipo: Artículo

References

White RF. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology. 1979;99:410–2.

Malamy J, Hennig J, Klessig’ DF. Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to Tobacco Mosaic Virus infection. Plant Cell. 1992;4:359.

Métraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, et al. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Sci (80-). 1990;250:1004–6. [+]
White RF. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology. 1979;99:410–2.

Malamy J, Hennig J, Klessig’ DF. Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to Tobacco Mosaic Virus infection. Plant Cell. 1992;4:359.

Métraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, et al. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Sci (80-). 1990;250:1004–6.

Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, et al. Requirement of salicylic acid for the induction of systemic acquired resistance. Sci (80-). 1993;261:754–6.

Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, et al. A central role of salicylic acid in plant disease resistance. Science. 1994;266:1247–50.

Klessig DF, Choi HW, Dempsey DA. Systemic Acquired Resistance and Salicylic Acid: past, Present, and Future. Mol Plant Microbe Interact. 2018;31:871–88.

Ding P, Ding Y. Stories of salicylic acid: a Plant Defense hormone. Trends Plant Sci. 2020;25:549–65.

Wildermuth MC, Dewdney J, Wu G, Ausubel FM. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature. 2001;414:562–5.

Zhang Y, Li X. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Curr Opin Plant Biol. 2019;50:29–36.

Rekhter D, Lüdke D, Ding Y, Feussner K, Zienkiewicz K, Lipka V, et al. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science. 2019;365:498–502.

Torrens-Spence MP, Bobokalonova A, Carballo V, Glinkerman CM, Pluskal T, Shen A, et al. PBS3 and EPS1 complete salicylic acid biosynthesis from Isochorismate in Arabidopsis. Mol Plant. 2019;12:1577–86.

Zeier J. Metabolic regulation of systemic acquired resistance. Curr Opin Plant Biol. 2021;62:102050.

Enyedi AJ, Yalpani N, Silverman P, Raskin I. Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc Natl Acad Sci U S A. 1992;89:2480.

Edwards R. Conjugation and metabolism of salicylic acid in Tobacco. J Plant Physiol. 1994;143:609–14.

Dean JV, Mohammed LA, Fitzpatrick T. The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures. Planta. 2005;221:287–96.

Canet JV, Dobón A, Ibáñez F, Perales L, Tornero P. Resistance and biomass in Arabidopsis: a new model for salicylic acid perception. Plant Biotechnol J. 2010;8:126–41.

Zhang Z, Li Q, Li Z, Staswick PE, Wang M, Zhu Y, et al. Dual regulation role of < em > GH3.5</em > in salicylic acid and Auxin Signaling during Arabidopsis-<em > Pseudomonas syringae</em > Interaction. Plant Physiol. 2007;145:450–64.

Baek D, Pathange P, Chung JS, Jiang J, Gao L, Oikawa A, et al. A stress-inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in Arabidopsis. Plant Cell Env. 2010;33:1383–92.

Shulaev V, Silverman P, Raskin I. Airborne signalling by methyl salicylate in plant pathogen resistance. Nat 1997 3856618. 1997;385:718–21.

Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Sci (80-). 2007;318:113–6.

Zhang K, Halitschke R, Yin C, Liu CJ, Gan SS. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism. Proc Natl Acad Sci U S A. 2013;110:14807–12.

van Damme M, Huibers RP, Elberse J, Van den Ackerveken G. Arabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to downy mildew. Plant J. 2008;54:785–93.

Zhang Y, Zhao L, Zhao J, Li Y, Wang J, Guo R, et al. S5H/DMR6 encodes a salicylic acid 5-hydroxylase that fine-tunes salicylic acid homeostasis. Plant Physiol. 2017;175:1082–93.

Thomazella D, Seong K, Mackelprang R, Dahlbeck D, Geng Y, Gill U, et al. Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. Proc Natl Acad Sci U S A. 2021;118(27):e2026152118.

Bartsch M, Bednarek P, Vivancos PD, Schneider B, von Roepenack-Lahaye E, Foyer CH, et al. Accumulation of isochorismate-derived 2,3-dihydroxybenzoic 3-O-beta-D-xyloside in arabidopsis resistance to pathogens and ageing of leaves. J Biol Chem. 2010;285:25654–65.

Lutwak-Mann C. The excretion of a metabolic product of salicylic acid. Biochem J. 1943;37:246–8.

Walker N, Evans WC. Pathways in the metabolism of the monohydroxybenzoic acids by soil bacteria. Biochem J. 1952;52:xxiii–xxiv.

Ibrahim RK, Towers GHN. Conversion of Salicylic Acid to Gentisic Acid and o-Pyrocatechuic acid, all labelled with Carbon-14, in plants. Nature. 1959;184:1803.

Fayos J, Bellés JM, López-Gresa MP, Primo J, Conejero V. Induction of gentisic acid 5-O-beta-D-xylopyranoside in tomato and cucumber plants infected by different pathogens. Phytochemistry. 2006;67:142–8.

Dean JV, Delaney SP. Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana. Physiol Plant. 2008;132:417–25.

Tárraga S, Lisón P, López-Gresa MP, Torres C, Rodrigo I, Bellés JM, et al. Molecular cloning and characterization of a novel tomato xylosyltransferase specific for gentisic acid. J Exp Bot. 2010;61:4325–38.

Li X, Svedin E, Mo H, Atwell S, Dilkes BP, Chapple C. Exploiting natural variation of secondary metabolism identifies a gene controlling the glycosylation diversity of dihydroxybenzoic acids in Arabidopsis thaliana. Genetics. 2014;198:1267–76.

Bellés JM, Garro R, Fayos J, Navarro P, Primo J, Conejero V. Gentisic acid as a Pathogen-Inducible Signal, additional to salicylic acid for activation of Plant Defenses in Tomato. Mol Plant-Microbe Interact. 1999;12:227–35.

Bellés JM, Garro R, Pallas V, Fayos J, Rodrigo I, Conejero V. Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. Planta. 2006;223:500–11.

Campos L, Granell P, Tarraga S, Lopez-Gresa P, Conejero V, Belles JM, et al. Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens. Plant Physiol Biochem. 2014;77:35–43.

López-Gresa MP, Lisón P, Yenush L, Conejero V, Rodrigo I, Belles JM. Salicylic acid is involved in the basal resistance of tomato plants to Citrus Exocortis Viroid and Tomato spotted Wilt Virus. PLoS One. 2016;11:e0166938.

López-Gresa MP, Lisón P, Campos L, Rodrigo I, Rambla JL, Granell A, et al. A non-targeted Metabolomics Approach unravels the VOCs Associated with the Tomato Immune response against Pseudomonas syringae. Front Plant Sci. 2017;8:1188.

López-Gresa MP, Payá C, Rodrigo I, Bellés JM, Barceló S, Hae Choi Y, et al. Effect of Benzothiadiazole on the metabolome of tomato plants infected by Citrus Exocortis Viroid. Viruses. 2019;11(5):437.

López-Gresa MP, Lisón P, Kim HK, Choi YH, Verpoorte R, Rodrigo I, et al. Metabolic fingerprinting of Tomato Mosaic Virus infected Solanum lycopersicum. J Plant Physiol. 2012;169:1586–96.

Prol FV, López-Gresa MP, Rodrigo I, Bellés JM, Lisón P. Ethylene is involved in Symptom Development and ribosomal stress of tomato plants upon Citrus Exocortis Viroid infection. Plants (Basel). 2020;9(5):582

Granell A, Bellés JM, Conejero V. Induction of pathogenesis-related proteins in tomato by citrus exocortis viroid, silver ion and ethephon. Physiol Mol Plant Pathol. 1987;31:83–90.

Tornero P, Rodrigo I, Conejero V, Vera P. Nucleotide sequence of a cDNA encoding a pathogenesis-related protein, p1-p14, from tomato (Lycopersicon esculentum). Plant Physiol. 1993;102:325.

Lison P, Rodrigo I, Conejero V. A novel function for the cathepsin D inhibitor in tomato. Plant Physiol. 2006;142:1329–39.

Tieman D, Zeigler M, Schmelz E, Taylor MG, Rushing S, Jones JB, et al. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. Plant J. 2010;62:113–23.

Campos L, López-Gresa MP, Fuertes D, Bellés JM, Rodrigo I, Lisón P. Tomato glycosyltransferase Twi1 plays a role in flavonoid glycosylation and defence against virus. BMC Plant Biol. 2019;19(1):450.

Ma X, Balazadeh S, Mueller-Roeber B. Tomato fruit ripening factor NOR controls leaf senescence. J Exp Bot. 2019;70:2727–40.

Huang XX, Zhu GQ, Liu Q, Chen L, Li YJ, Hou BK. Modulation of Plant Salicylic Acid-Associated Immune responses via glycosylation of Dihydroxybenzoic acids. Plant Physiol. 2018;176:3103–19.

Chen L, Wang WS, Wang T, Meng XF, Chen TT, Huang XX, et al. Methyl Salicylate Glucosylation regulates Plant Defense Signaling and systemic Acquired Resistance. Plant Physiol. 2019;180:2167–81.

Thaler JS, Humphrey PT, Whiteman NK. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 2012;17:260–70.

Zacarés L, López-Gresa MP, Fayos J, Primo J, Bellés JM, Conejero V. Induction of p-coumaroyldopamine and feruloyldopamine, two novel metabolites, in tomato by the bacterial pathogen Pseudomonas syringae. Mol Plant Microbe Interact. 2007;20:1439–48.

López-Gresa MP, Torres C, Campos L, Lisón P, Rodrigo I, Bellés JM, et al. Identification of defence metabolites in tomato plants infected by the bacterial pathogen Pseudomonas syringae. Environ Exp Bot. 2011;74:216–28.

Clifford MN, Jaganath IB, Ludwig IA, Crozier A. Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Nat Prod Rep. 2017;34:1391–421.

Klem K, Holub P, Štroch M, Nezval J, Špunda V, Tříska J, et al. Ultraviolet and photosynthetically active radiation can both induce photoprotective capacity allowing barley to overcome high radiation stress. Plant Physiol Biochem. 2015;93:74–83.

Mondolot L, La Fisca P, Buatois B, Talansier E, De Kochko A, Campa C. Evolution in Caffeoylquinic Acid Content and Histolocalization during Coffea canephora Leaf Development. Ann Bot. 2006;98:33–40.

Zeiss DR, Mhlongo MI, Tugizimana F, Steenkamp PA, Dubery IA. Metabolomic profiling of the host response of Tomato (Solanum lycopersicum) following infection by Ralstonia solanacearum. Int J Mol Sci 2019. 2019;20(Page 3945):20:3945.

Kuhn A, Engqvist MKM, Jansen EEW, Weber APM, Jakobs C, Maurino VG. D-2-hydroxyglutarate metabolism is linked to photorespiration in the shm1-1 mutant. Plant Biol. 2013;15:776–84.

Sipari N, Lihavainen J, Shapiguzov A, Kangasjärvi J, Keinänen M. Primary metabolite responses to oxidative stress in early-senescing and paraquat resistant Arabidopsis thaliana rcd1 (Radical-Induced cell Death1). Front Plant Sci. 2020;11:194.

Engqvist MKM, Kuhn A, Wienstroer J, Weber K, Jansen EEW, Jakobs C, et al. Plant D-2-hydroxyglutarate dehydrogenase participates in the catabolism of lysine especially during senescence. J Biol Chem. 2011;286:11382–90.

Herrera-Vásquez A, Salinas P, Holuigue L. Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Front Plant Sci. 2015;6 MAR:1–9.

Dadáková K, Heinrichová T, Lochman J, Kašparovský T. Production of defense phenolics in tomato leaves of different age. Molecules. 2020;25(21):4952.

Hernández-Aparicio F, Lisón P, Rodrigo I, Bellés JM, López-Gresa MP. Signaling in the Tomato immunity against Fusarium oxysporum. Molecules. 2021;26(7):1818.

Mishra AK, Baek KH. Salicylic Acid Biosynthesis and Metabolism: A Divergent Pathway for Plants and Bacteria. Biomol. 2021;11:705.

Wilson DC, Carella P, Cameron RK. Intercellular salicylic acid accumulation during compatible and incompatible Arabidopsis-Pseudomonas syringae interactions. Plant Signal Behav. 2014;9(8):e29362

Lowe-Power TM, Jacobs JM, Ailloud F, Fochs B, Prior P, Allen C. Degradation of the plant defense signal salicylic acid protects Ralstonia solanacearum from toxicity and enhances virulence on Tobacco. MBio. 2016;7.

Morris K, Mackerness SAH, Page T, Fred John C, Murphy AM, Carr JP, et al. Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J. 2000;23:677–85.

Conejero V, Bellés JM, García-Breijo F, Garro R, Hernandez-Yago J, Rodrigo I, Vera P. Signalling in viroid pathogenesis. In: Fraser RSS, editor. NATO ASI Series, vol H 14: recognition and response in plant-virus interactions. Berlin/Heidelberg: Springer-Verlag; 1990. pp. 233–61.

Nakagawa T, Suzuki T, Murata S, Nakamura S, Hino T, Maeo K, et al. Improved gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci Biotechnol Biochem. 2007;71:2095–100.

Helliwell C, Waterhouse P. Constructs and methods for high-throughput gene silencing in plants. Methods. 2003;30:289–95.

Gleave AP. A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 1992 206. 1992;20:1203–7.

Lakatos L, Szittya G, Silhavy D, Burgyán J. Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J. 2004;23:876.

Ellul P, Garcia-Sogo B, Pineda B, Ríos G, Roig LA, Moreno V. The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum Mill.) Is genotype and procedure dependent [corrected]. Theor Appl Genet. 2003;106:231–8.

Yang H, Morita A, Matsubayashi Y, Nakamura K, Sakagami Y. A rapid and efficient system of Agrobacterium infection-mediated transient gene expression in rice oc cells and its application for analysis of the expression and antisense suppression of preprophytosulfokine, a precursor of phytosulfokine-a, encoded by OsPSK gene. Plant Cell Physiol. 2000;41:811–6.

Conejero V, Semancik JS. Exocortis viroid: alteration in the proteins of Gynura aurantiaca accompanying viroid infection. Virology. 1977;77:221–32.

Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979;76:4350–4.

Campos L, López-Gresa MP, Fuertes D, Bellés JM, Rodrigo I, Lisón P. Tomato glycosyltransferase Twi1 plays a role in flavonoid glycosylation and defence against virus. BMC Plant Biol. 2019;19:450.

Semancik JS, Roistacher CN, Rivera-Bustamante R, Duran-Vila N. Citrus Cachexia Viroid, a New Viroid of Citrus: relationship to Viroids of the Exocortis Disease Complex. J Gen Virol. 1988;69:3059–68.

Ntoukakis V, Mucyn TS, Gimenez-Ibanez S, Chapman HC, Gutierrez JR, Balmuth AL, et al. Host inhibition of a bacterial virulence effector triggers immunity to infection. Sci (80-). 2009;324:784–7.

López-Gresa MP, Payá C, Ozáez M, Rodrigo I, Conejero V, Klee H, et al. A new role for green leaf volatile esters in tomato stomatal defense against pseudomonas syringe pv. Tomato. Front Plant Sci. 2018;9:1855.

Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol. 1949;24:1–15.

Rambla JL, López-Gresa MP, Bellés JM, Granell A. Metabolomic profiling of plant tissues. Methods Mol Biol. 2015;1284:221–35.

Campos L, Lisón P, López-Gresa MP, Rodrigo I, Zacarés L, Conejero V, et al. Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae. Mol Plant Microbe Interact. 2014;27:1159–69.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem