- -

SlS5H silencing reveals specific pathogen-triggered salicylic acid metabolism in tomato

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

SlS5H silencing reveals specific pathogen-triggered salicylic acid metabolism in tomato

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Payá C. es_ES
dc.contributor.author Minguillón, S. es_ES
dc.contributor.author Hernández, M. es_ES
dc.contributor.author Miguel, S.M. es_ES
dc.contributor.author Campos, L. es_ES
dc.contributor.author Rodrigo Bravo, Ismael es_ES
dc.contributor.author Belles Albert, José Mª es_ES
dc.contributor.author López-Gresa, María Pilar es_ES
dc.contributor.author Lisón, Purificación es_ES
dc.date.accessioned 2023-07-21T18:05:22Z
dc.date.available 2023-07-21T18:05:22Z
dc.date.issued 2022-11-29 es_ES
dc.identifier.issn 1471-2229 es_ES
dc.identifier.uri http://hdl.handle.net/10251/195328
dc.description.abstract [EN] Background Salicylic acid (SA) is a major plant hormone that mediates the defence pathway against pathogens. SA accumulates in highly variable amounts depending on the plant-pathogen system, and several enzyme activities participate in the restoration of its levels. Gentisic acid (GA) is the product of the 5-hydroxylation of SA, which is catalysed by S5H, an enzyme activity regarded as a major player in SA homeostasis. GA accumulates at high levels in tomato plants infected by Citrus Exocortis Viroid (CEVd), and to a lesser extend upon Pseudomonas syringae DC3000 pv. tomato (Pst) infection. Results We have studied the induction of tomato SlS5H gene by different pathogens, and its expression correlates with the accumulation of GA. Transient over-expression of SlS5H in Nicotiana benthamiana confirmed that SA is processed by SlS5H in vivo. SlS5H-silenced tomato plants were generated, displaying a smaller size and early senescence, together with hypersusceptibility to the necrotrophic fungus Botrytis cinerea. In contrast, these transgenic lines exhibited an increased defence response and resistance to both CEVd and Pst infections. Alternative SA processing appears to occur for each specific pathogenic interaction to cope with SA levels. In SlS5H-silenced plants infected with CEVd, glycosylated SA was the most discriminant metabolite found. Instead, in Pst-infected transgenic plants, SA appeared to be rerouted to other phenolics such as feruloyldopamine, feruloylquinic acid, feruloylgalactarate and 2-hydroxyglutarate. Conclusion Using SlS5H-silenced plants as a tool to unbalance SA levels, we have studied the re-routing of SA upon CEVd and Pst infections and found that, despite the common origin and role for SA in plant pathogenesis, there appear to be different pathogen-specific, alternate homeostasis pathways. es_ES
dc.description.sponsorship This work was supported by Grant PID2020-116765RB-I00 funded by MCIN/AEI/https://doi.org/10.13039/501100011033 and Grant AICO/2017/048 from the Generalitat Valenciana. Work in the lab is also supported by grant PROMETEU/2021/056 by Generalitat Valenciana. C.P. was a recipient of a predoctoral contract of the Generalitat Valenciana (ACIF/2019/187). es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof BMC Plant Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Defence es_ES
dc.subject Metabolomics es_ES
dc.subject Pathogen es_ES
dc.subject Phenolics es_ES
dc.subject Plant stress es_ES
dc.subject Salicylic acid es_ES
dc.subject Tomato es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title SlS5H silencing reveals specific pathogen-triggered salicylic acid metabolism in tomato es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12870-022-03939-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116765RB-I00/ES/SEÑALIZACION DE LA RESPUESTA DEFENSIVA DE PLANTAS DE TOMATE FRENTE A BACTERIA: COMUNICACION INTRA- E INTER-PLANTA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2017%2F048//GENERACION DE PLANTAS TRANSGENICAS DE TOMATE EVOCS INDUCTORAS DE RESISTENCIA EN CULTIVOS VECINOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2021%2F056/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2019%2F187/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Payá C.; Minguillón, S.; Hernández, M.; Miguel, S.; Campos, L.; Rodrigo Bravo, I.; Belles Albert, JM.... (2022). SlS5H silencing reveals specific pathogen-triggered salicylic acid metabolism in tomato. BMC Plant Biology. 22(1):1-22. https://doi.org/10.1186/s12870-022-03939-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12870-022-03939-5 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 36443652 es_ES
dc.identifier.pmcid PMC9706870 es_ES
dc.relation.pasarela S\479654 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references White RF. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology. 1979;99:410–2. es_ES
dc.description.references Malamy J, Hennig J, Klessig’ DF. Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to Tobacco Mosaic Virus infection. Plant Cell. 1992;4:359. es_ES
dc.description.references Métraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, et al. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Sci (80-). 1990;250:1004–6. es_ES
dc.description.references Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, et al. Requirement of salicylic acid for the induction of systemic acquired resistance. Sci (80-). 1993;261:754–6. es_ES
dc.description.references Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, et al. A central role of salicylic acid in plant disease resistance. Science. 1994;266:1247–50. es_ES
dc.description.references Klessig DF, Choi HW, Dempsey DA. Systemic Acquired Resistance and Salicylic Acid: past, Present, and Future. Mol Plant Microbe Interact. 2018;31:871–88. es_ES
dc.description.references Ding P, Ding Y. Stories of salicylic acid: a Plant Defense hormone. Trends Plant Sci. 2020;25:549–65. es_ES
dc.description.references Wildermuth MC, Dewdney J, Wu G, Ausubel FM. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature. 2001;414:562–5. es_ES
dc.description.references Zhang Y, Li X. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Curr Opin Plant Biol. 2019;50:29–36. es_ES
dc.description.references Rekhter D, Lüdke D, Ding Y, Feussner K, Zienkiewicz K, Lipka V, et al. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science. 2019;365:498–502. es_ES
dc.description.references Torrens-Spence MP, Bobokalonova A, Carballo V, Glinkerman CM, Pluskal T, Shen A, et al. PBS3 and EPS1 complete salicylic acid biosynthesis from Isochorismate in Arabidopsis. Mol Plant. 2019;12:1577–86. es_ES
dc.description.references Zeier J. Metabolic regulation of systemic acquired resistance. Curr Opin Plant Biol. 2021;62:102050. es_ES
dc.description.references Enyedi AJ, Yalpani N, Silverman P, Raskin I. Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc Natl Acad Sci U S A. 1992;89:2480. es_ES
dc.description.references Edwards R. Conjugation and metabolism of salicylic acid in Tobacco. J Plant Physiol. 1994;143:609–14. es_ES
dc.description.references Dean JV, Mohammed LA, Fitzpatrick T. The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures. Planta. 2005;221:287–96. es_ES
dc.description.references Canet JV, Dobón A, Ibáñez F, Perales L, Tornero P. Resistance and biomass in Arabidopsis: a new model for salicylic acid perception. Plant Biotechnol J. 2010;8:126–41. es_ES
dc.description.references Zhang Z, Li Q, Li Z, Staswick PE, Wang M, Zhu Y, et al. Dual regulation role of < em > GH3.5</em > in salicylic acid and Auxin Signaling during Arabidopsis-<em > Pseudomonas syringae</em > Interaction. Plant Physiol. 2007;145:450–64. es_ES
dc.description.references Baek D, Pathange P, Chung JS, Jiang J, Gao L, Oikawa A, et al. A stress-inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in Arabidopsis. Plant Cell Env. 2010;33:1383–92. es_ES
dc.description.references Shulaev V, Silverman P, Raskin I. Airborne signalling by methyl salicylate in plant pathogen resistance. Nat 1997 3856618. 1997;385:718–21. es_ES
dc.description.references Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Sci (80-). 2007;318:113–6. es_ES
dc.description.references Zhang K, Halitschke R, Yin C, Liu CJ, Gan SS. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism. Proc Natl Acad Sci U S A. 2013;110:14807–12. es_ES
dc.description.references van Damme M, Huibers RP, Elberse J, Van den Ackerveken G. Arabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to downy mildew. Plant J. 2008;54:785–93. es_ES
dc.description.references Zhang Y, Zhao L, Zhao J, Li Y, Wang J, Guo R, et al. S5H/DMR6 encodes a salicylic acid 5-hydroxylase that fine-tunes salicylic acid homeostasis. Plant Physiol. 2017;175:1082–93. es_ES
dc.description.references Thomazella D, Seong K, Mackelprang R, Dahlbeck D, Geng Y, Gill U, et al. Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. Proc Natl Acad Sci U S A. 2021;118(27):e2026152118. es_ES
dc.description.references Bartsch M, Bednarek P, Vivancos PD, Schneider B, von Roepenack-Lahaye E, Foyer CH, et al. Accumulation of isochorismate-derived 2,3-dihydroxybenzoic 3-O-beta-D-xyloside in arabidopsis resistance to pathogens and ageing of leaves. J Biol Chem. 2010;285:25654–65. es_ES
dc.description.references Lutwak-Mann C. The excretion of a metabolic product of salicylic acid. Biochem J. 1943;37:246–8. es_ES
dc.description.references Walker N, Evans WC. Pathways in the metabolism of the monohydroxybenzoic acids by soil bacteria. Biochem J. 1952;52:xxiii–xxiv. es_ES
dc.description.references Ibrahim RK, Towers GHN. Conversion of Salicylic Acid to Gentisic Acid and o-Pyrocatechuic acid, all labelled with Carbon-14, in plants. Nature. 1959;184:1803. es_ES
dc.description.references Fayos J, Bellés JM, López-Gresa MP, Primo J, Conejero V. Induction of gentisic acid 5-O-beta-D-xylopyranoside in tomato and cucumber plants infected by different pathogens. Phytochemistry. 2006;67:142–8. es_ES
dc.description.references Dean JV, Delaney SP. Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana. Physiol Plant. 2008;132:417–25. es_ES
dc.description.references Tárraga S, Lisón P, López-Gresa MP, Torres C, Rodrigo I, Bellés JM, et al. Molecular cloning and characterization of a novel tomato xylosyltransferase specific for gentisic acid. J Exp Bot. 2010;61:4325–38. es_ES
dc.description.references Li X, Svedin E, Mo H, Atwell S, Dilkes BP, Chapple C. Exploiting natural variation of secondary metabolism identifies a gene controlling the glycosylation diversity of dihydroxybenzoic acids in Arabidopsis thaliana. Genetics. 2014;198:1267–76. es_ES
dc.description.references Bellés JM, Garro R, Fayos J, Navarro P, Primo J, Conejero V. Gentisic acid as a Pathogen-Inducible Signal, additional to salicylic acid for activation of Plant Defenses in Tomato. Mol Plant-Microbe Interact. 1999;12:227–35. es_ES
dc.description.references Bellés JM, Garro R, Pallas V, Fayos J, Rodrigo I, Conejero V. Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. Planta. 2006;223:500–11. es_ES
dc.description.references Campos L, Granell P, Tarraga S, Lopez-Gresa P, Conejero V, Belles JM, et al. Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens. Plant Physiol Biochem. 2014;77:35–43. es_ES
dc.description.references López-Gresa MP, Lisón P, Yenush L, Conejero V, Rodrigo I, Belles JM. Salicylic acid is involved in the basal resistance of tomato plants to Citrus Exocortis Viroid and Tomato spotted Wilt Virus. PLoS One. 2016;11:e0166938. es_ES
dc.description.references López-Gresa MP, Lisón P, Campos L, Rodrigo I, Rambla JL, Granell A, et al. A non-targeted Metabolomics Approach unravels the VOCs Associated with the Tomato Immune response against Pseudomonas syringae. Front Plant Sci. 2017;8:1188. es_ES
dc.description.references López-Gresa MP, Payá C, Rodrigo I, Bellés JM, Barceló S, Hae Choi Y, et al. Effect of Benzothiadiazole on the metabolome of tomato plants infected by Citrus Exocortis Viroid. Viruses. 2019;11(5):437. es_ES
dc.description.references López-Gresa MP, Lisón P, Kim HK, Choi YH, Verpoorte R, Rodrigo I, et al. Metabolic fingerprinting of Tomato Mosaic Virus infected Solanum lycopersicum. J Plant Physiol. 2012;169:1586–96. es_ES
dc.description.references Prol FV, López-Gresa MP, Rodrigo I, Bellés JM, Lisón P. Ethylene is involved in Symptom Development and ribosomal stress of tomato plants upon Citrus Exocortis Viroid infection. Plants (Basel). 2020;9(5):582 es_ES
dc.description.references Granell A, Bellés JM, Conejero V. Induction of pathogenesis-related proteins in tomato by citrus exocortis viroid, silver ion and ethephon. Physiol Mol Plant Pathol. 1987;31:83–90. es_ES
dc.description.references Tornero P, Rodrigo I, Conejero V, Vera P. Nucleotide sequence of a cDNA encoding a pathogenesis-related protein, p1-p14, from tomato (Lycopersicon esculentum). Plant Physiol. 1993;102:325. es_ES
dc.description.references Lison P, Rodrigo I, Conejero V. A novel function for the cathepsin D inhibitor in tomato. Plant Physiol. 2006;142:1329–39. es_ES
dc.description.references Tieman D, Zeigler M, Schmelz E, Taylor MG, Rushing S, Jones JB, et al. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. Plant J. 2010;62:113–23. es_ES
dc.description.references Campos L, López-Gresa MP, Fuertes D, Bellés JM, Rodrigo I, Lisón P. Tomato glycosyltransferase Twi1 plays a role in flavonoid glycosylation and defence against virus. BMC Plant Biol. 2019;19(1):450. es_ES
dc.description.references Ma X, Balazadeh S, Mueller-Roeber B. Tomato fruit ripening factor NOR controls leaf senescence. J Exp Bot. 2019;70:2727–40. es_ES
dc.description.references Huang XX, Zhu GQ, Liu Q, Chen L, Li YJ, Hou BK. Modulation of Plant Salicylic Acid-Associated Immune responses via glycosylation of Dihydroxybenzoic acids. Plant Physiol. 2018;176:3103–19. es_ES
dc.description.references Chen L, Wang WS, Wang T, Meng XF, Chen TT, Huang XX, et al. Methyl Salicylate Glucosylation regulates Plant Defense Signaling and systemic Acquired Resistance. Plant Physiol. 2019;180:2167–81. es_ES
dc.description.references Thaler JS, Humphrey PT, Whiteman NK. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 2012;17:260–70. es_ES
dc.description.references Zacarés L, López-Gresa MP, Fayos J, Primo J, Bellés JM, Conejero V. Induction of p-coumaroyldopamine and feruloyldopamine, two novel metabolites, in tomato by the bacterial pathogen Pseudomonas syringae. Mol Plant Microbe Interact. 2007;20:1439–48. es_ES
dc.description.references López-Gresa MP, Torres C, Campos L, Lisón P, Rodrigo I, Bellés JM, et al. Identification of defence metabolites in tomato plants infected by the bacterial pathogen Pseudomonas syringae. Environ Exp Bot. 2011;74:216–28. es_ES
dc.description.references Clifford MN, Jaganath IB, Ludwig IA, Crozier A. Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Nat Prod Rep. 2017;34:1391–421. es_ES
dc.description.references Klem K, Holub P, Štroch M, Nezval J, Špunda V, Tříska J, et al. Ultraviolet and photosynthetically active radiation can both induce photoprotective capacity allowing barley to overcome high radiation stress. Plant Physiol Biochem. 2015;93:74–83. es_ES
dc.description.references Mondolot L, La Fisca P, Buatois B, Talansier E, De Kochko A, Campa C. Evolution in Caffeoylquinic Acid Content and Histolocalization during Coffea canephora Leaf Development. Ann Bot. 2006;98:33–40. es_ES
dc.description.references Zeiss DR, Mhlongo MI, Tugizimana F, Steenkamp PA, Dubery IA. Metabolomic profiling of the host response of Tomato (Solanum lycopersicum) following infection by Ralstonia solanacearum. Int J Mol Sci 2019. 2019;20(Page 3945):20:3945. es_ES
dc.description.references Kuhn A, Engqvist MKM, Jansen EEW, Weber APM, Jakobs C, Maurino VG. D-2-hydroxyglutarate metabolism is linked to photorespiration in the shm1-1 mutant. Plant Biol. 2013;15:776–84. es_ES
dc.description.references Sipari N, Lihavainen J, Shapiguzov A, Kangasjärvi J, Keinänen M. Primary metabolite responses to oxidative stress in early-senescing and paraquat resistant Arabidopsis thaliana rcd1 (Radical-Induced cell Death1). Front Plant Sci. 2020;11:194. es_ES
dc.description.references Engqvist MKM, Kuhn A, Wienstroer J, Weber K, Jansen EEW, Jakobs C, et al. Plant D-2-hydroxyglutarate dehydrogenase participates in the catabolism of lysine especially during senescence. J Biol Chem. 2011;286:11382–90. es_ES
dc.description.references Herrera-Vásquez A, Salinas P, Holuigue L. Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Front Plant Sci. 2015;6 MAR:1–9. es_ES
dc.description.references Dadáková K, Heinrichová T, Lochman J, Kašparovský T. Production of defense phenolics in tomato leaves of different age. Molecules. 2020;25(21):4952. es_ES
dc.description.references Hernández-Aparicio F, Lisón P, Rodrigo I, Bellés JM, López-Gresa MP. Signaling in the Tomato immunity against Fusarium oxysporum. Molecules. 2021;26(7):1818. es_ES
dc.description.references Mishra AK, Baek KH. Salicylic Acid Biosynthesis and Metabolism: A Divergent Pathway for Plants and Bacteria. Biomol. 2021;11:705. es_ES
dc.description.references Wilson DC, Carella P, Cameron RK. Intercellular salicylic acid accumulation during compatible and incompatible Arabidopsis-Pseudomonas syringae interactions. Plant Signal Behav. 2014;9(8):e29362 es_ES
dc.description.references Lowe-Power TM, Jacobs JM, Ailloud F, Fochs B, Prior P, Allen C. Degradation of the plant defense signal salicylic acid protects Ralstonia solanacearum from toxicity and enhances virulence on Tobacco. MBio. 2016;7. es_ES
dc.description.references Morris K, Mackerness SAH, Page T, Fred John C, Murphy AM, Carr JP, et al. Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J. 2000;23:677–85. es_ES
dc.description.references Conejero V, Bellés JM, García-Breijo F, Garro R, Hernandez-Yago J, Rodrigo I, Vera P. Signalling in viroid pathogenesis. In: Fraser RSS, editor. NATO ASI Series, vol H 14: recognition and response in plant-virus interactions. Berlin/Heidelberg: Springer-Verlag; 1990. pp. 233–61. es_ES
dc.description.references Nakagawa T, Suzuki T, Murata S, Nakamura S, Hino T, Maeo K, et al. Improved gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci Biotechnol Biochem. 2007;71:2095–100. es_ES
dc.description.references Helliwell C, Waterhouse P. Constructs and methods for high-throughput gene silencing in plants. Methods. 2003;30:289–95. es_ES
dc.description.references Gleave AP. A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 1992 206. 1992;20:1203–7. es_ES
dc.description.references Lakatos L, Szittya G, Silhavy D, Burgyán J. Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J. 2004;23:876. es_ES
dc.description.references Ellul P, Garcia-Sogo B, Pineda B, Ríos G, Roig LA, Moreno V. The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum Mill.) Is genotype and procedure dependent [corrected]. Theor Appl Genet. 2003;106:231–8. es_ES
dc.description.references Yang H, Morita A, Matsubayashi Y, Nakamura K, Sakagami Y. A rapid and efficient system of Agrobacterium infection-mediated transient gene expression in rice oc cells and its application for analysis of the expression and antisense suppression of preprophytosulfokine, a precursor of phytosulfokine-a, encoded by OsPSK gene. Plant Cell Physiol. 2000;41:811–6. es_ES
dc.description.references Conejero V, Semancik JS. Exocortis viroid: alteration in the proteins of Gynura aurantiaca accompanying viroid infection. Virology. 1977;77:221–32. es_ES
dc.description.references Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979;76:4350–4. es_ES
dc.description.references Campos L, López-Gresa MP, Fuertes D, Bellés JM, Rodrigo I, Lisón P. Tomato glycosyltransferase Twi1 plays a role in flavonoid glycosylation and defence against virus. BMC Plant Biol. 2019;19:450. es_ES
dc.description.references Semancik JS, Roistacher CN, Rivera-Bustamante R, Duran-Vila N. Citrus Cachexia Viroid, a New Viroid of Citrus: relationship to Viroids of the Exocortis Disease Complex. J Gen Virol. 1988;69:3059–68. es_ES
dc.description.references Ntoukakis V, Mucyn TS, Gimenez-Ibanez S, Chapman HC, Gutierrez JR, Balmuth AL, et al. Host inhibition of a bacterial virulence effector triggers immunity to infection. Sci (80-). 2009;324:784–7. es_ES
dc.description.references López-Gresa MP, Payá C, Ozáez M, Rodrigo I, Conejero V, Klee H, et al. A new role for green leaf volatile esters in tomato stomatal defense against pseudomonas syringe pv. Tomato. Front Plant Sci. 2018;9:1855. es_ES
dc.description.references Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol. 1949;24:1–15. es_ES
dc.description.references Rambla JL, López-Gresa MP, Bellés JM, Granell A. Metabolomic profiling of plant tissues. Methods Mol Biol. 2015;1284:221–35. es_ES
dc.description.references Campos L, Lisón P, López-Gresa MP, Rodrigo I, Zacarés L, Conejero V, et al. Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae. Mol Plant Microbe Interact. 2014;27:1159–69. es_ES
upv.costeAPC 2800 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem