- -

IoT, Machine Learning and Photogrammetry in Small Hydropower Towards Energy and Digital Transition: Potential Energy and Viability Analyses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

IoT, Machine Learning and Photogrammetry in Small Hydropower Towards Energy and Digital Transition: Potential Energy and Viability Analyses

Mostrar el registro completo del ítem

Ramos, HM.; Coronado-Hernández, ÓE. (2023). IoT, Machine Learning and Photogrammetry in Small Hydropower Towards Energy and Digital Transition: Potential Energy and Viability Analyses. Journal of Applied Research in Technology & Engineering. 4(2):69-86. https://doi.org/10.4995/jarte.2023.19510

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/195372

Ficheros en el ítem

Metadatos del ítem

Título: IoT, Machine Learning and Photogrammetry in Small Hydropower Towards Energy and Digital Transition: Potential Energy and Viability Analyses
Autor: Ramos, Helena M. Coronado-Hernández, Óscar E.
Fecha difusión:
Resumen:
[EN] This research aims to evaluate and put into practise the design of a small hydropower plant on a stream at São Vicente, in Madeira Island, supported by internet of things (IoT). The photogrammetry technique is also ...[+]
Palabras clave: IoT , Smart tools , Photogrammetry , Machine learning , Viability design , Small hydropower , Energy and digital transition , Internet protocol
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Journal of Applied Research in Technology & Engineering. (eissn: 2695-8821 )
DOI: 10.4995/jarte.2023.19510
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/jarte.2023.19510
Agradecimientos:
The authors would like to thank to RAM in the data acquisition support and also to João Pedro Barreto in the survey, data achievement and analyses developed during his MSc thesis, under the supervision of Prof. Helena M. ...[+]
Tipo: Artículo

Localización


 

References

Afzal, B., Umair, M., Asadullah, S.G., & Ahmed, E. (2019). Enabling IoT platforms for social IoT applications: Vision, feature mapping, and challenges. Future Generation Computer Systems, 92, 718-731. https://doi.org/10.1016/j.future.2017.12.002

Barros, M.T.L., Tsai., F.T.C., Yang, S., Lopes, J.E.G., & Yeh, W.W.G. (2003). Optimization of large-scale hydropower system operations. J. Water Resour. Plan. Manag., 129(3), 178-188. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(178)

Bhatia, M., & Sood, S K. (2020). Quantum Computing-Inspired Network Optimization for IoT Applications. IEEE Internet of Things Journal, 7(6), 5590-5598. https://doi.org/10.1109/JIOT.2020.2979887 [+]
Afzal, B., Umair, M., Asadullah, S.G., & Ahmed, E. (2019). Enabling IoT platforms for social IoT applications: Vision, feature mapping, and challenges. Future Generation Computer Systems, 92, 718-731. https://doi.org/10.1016/j.future.2017.12.002

Barros, M.T.L., Tsai., F.T.C., Yang, S., Lopes, J.E.G., & Yeh, W.W.G. (2003). Optimization of large-scale hydropower system operations. J. Water Resour. Plan. Manag., 129(3), 178-188. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(178)

Bhatia, M., & Sood, S K. (2020). Quantum Computing-Inspired Network Optimization for IoT Applications. IEEE Internet of Things Journal, 7(6), 5590-5598. https://doi.org/10.1109/JIOT.2020.2979887

Brown, E. (2016). 21 Open-Source Projects for IoT. Linux.com. Retrieved October 23, 2016.

Cheng, W.K., Ileladewa, A.A., & Tan, T.B. (2019). A Personalized Recommendation Framework for Social Internet of Things (SIoT). In 2019 International Conference on Green and Human Information Technology (ICGHIT), pp. 24-29. https://doi.org/10.1109/ICGHIT.2019.00013

Chiara, B., Hans, I.S., Jiehong, K., & Zhirong, Y. (2020). Machine Learning for Hydropower Scheduling: State of the Art and Future Research Directions. Procedia Computer Science, 176, 1659-1668. https://doi.org/10.1016/j.procs.2020.09.190

Ferreira, J.H.I., Camacho, J.R., Malagoli, J.A., & Júnior, S.C.G. (2016). Assessment of the potential of small hydropower development in Brazil. Renewable and Sustainable Energy Reviews, 56, 380-387. https://doi.org/10.1016/j.rser.2015.11.035

Filho, G.L.T., dos Santos, I.F.S., & Barros, R.M. (2017). Cost estimate of small hydroelectric power plants based on the aspect factor. Renewable and Sustainable Energy Reviews, 77, 229-238. https://doi.org/10.1016/j.rser.2017.03.134

Filo, G. (2023). Artificial Intelligence Methods in Hydraulic System Design. Energies, 16(8), 3320. https://doi.org/10.3390/en16083320

Finardi, E.C., & da Silva, E.L. (2006). Solving the hydro unit commitment problem via dual decomposition and sequential quadratic programming. IEEE Transactions on Power Systems, 21(2), 835-844. https://doi.org/10.1109/TPWRS.2006.873121

Gaspar, M.A., & Portela, M.M. (2002). Contribution for the characterization of water resources in Madeira Island. Model to evaluate the superficial flow. 6º Water Congress (in Portuguese), Porto.

Gielen, D., Boshell, F., Saygin, D., Bazilian, M.D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38-50. https://doi.org/10.1016/j.esr.2019.01.006

Gillis, A. (2021). What is internet of things (IoT)? IOT Agenda. Retrieved August 17, 2021.

International Energy Agency (IEA), International Renewable Energy Agency (IRENA), United Nations Statistics Division (UNSD), World Bank Group (WB), & World Health Organization (WHO). (2019). Tracking SDG 7: The Energy Progress Report 2019. Washington, DC. Available online: https://www.irena.org/publications/2019/May/Tracking-SDG7-TheEnergy-Progress-Report-2019 (accessed on February 15, 2021).

International Energy Agency (IEA). (2020). Global Energy Review 2020. Available online: https://www.iea.org/reports/global-energy-review-2020 (accessed on February 15, 2021). https://doi.org/10.1787/a60abbf2-en

Kishore, T.S., Patro, E.R., Harish, V.S.K.V., & Haghighi, A.T. (2021). A Comprehensive Study on the Recent Progress and Trends in Development of Small Hydropower Projects. Energies, 14, 2882. https://doi.org/10.3390/en14102882

Kishore, T.S., & Vidyabharati, I.L. (2020). Characterization of high head run-of-river small hydro power plants using life cycle costing methodology. Water Energy International, 63, 42-47.

Kumar, R., Singal, S.K., Dwivedi, G., & Shukla, A.K. (2020). Development of maintenance cost correlation for high head run of river small hydro power plant. International Journal of Ambient Energy, 43, 1-14. https://doi.org/10.1080/01430750.2020.1804447

Lundstrom, T., Baqersad, J., & Niezrecki, C. (2013). Using High-Speed Stereophotogrammetry to Collect Operating Data on a Robinson R44 Helicopter. In Special Topics in Structural Dynamics, Volume 6, Conference Proceedings of the Society for Experimental Mechanics Series (pp. 401-410). Springer. https://doi.org/10.1007/978-1-4614-6546-1_44

Mitchell, T.M. (2017). Key Ideas in Machine Learning. Machine Learning, 1-11.

Montazerolghaem, A. (2021). Software-defined Internet of Multimedia Things: Energy-efficient and Load-balanced Resource Management. IEEE Internet of Things Journal, 9(3), 2432-2442. https://doi.org/10.1109/JIOT.2021.3095237

Muñoz, A. (2014). Machine Learning and Optimization. Courant Institute of Mathematical Sciences, 1-2.

Oliveira, R.P., Almeida, A.B., Sousa, J., Pereira, M.J., Portela, M.M., Coutinho, M.A., Ferreira, R., & Lopes, S. (2011). Evaluation of debris risk in Madeira Island: consequences of flood report (in Portuguese).

Prada, S., Perestrelo, A., Sequeira, M., Nunes, A., Figueira, C., & Cruz, J.V. (2005). Disponibilidades Hídricas na ilha da Madeira. Available online: http://www.researchgate.net/publication/258541061

Quaranta, E., & Revelli, R. (2015). Output power and power losses estimation for an overshot water wheel. Renewable Energy, 83, 979-987. https://doi.org/10.1016/j.renene.2015.05.018

Ramos, H. (Ed.) (2000). Guidelines for the design of small hydropower plants (pp. 190). CEHIDRO/WREAN/DED, ISBN 972 96346 4 5, North Ireland, UK.

Santolin, A., Cavazzini, G., Pavesi, G., Ardizzon, G., & Rossetti, A. (2011). Techno-economical method for the capacity sizing of a small hydropower plant. Energy Conversion and Management, 52, 2533-2541. https://doi.org/10.1016/j.enconman.2011.01.001

Sechin, A. (2014). Digital Photogrammetric Systems: Trends and Developments. GeoInformatics, 4, 32-34.

Singh, V.K., & Singal, S.K. (2017). Operation of hydro power plants-a review. Renewable and Sustainable Energy Reviews, 69, 610-619. https://doi.org/10.1016/j.rser.2016.11.169

Stojković, M., Kostić, S., Prohaska, S., Plavšić, J., & Tripković, V. (2017). A New Approach for Trend Assessment of Annual Streamflows: a Case Study of Hydropower Plants in Serbia. Water Resources Management, 31(4), 1089-1103. https://doi.org/10.1007/s11269-017-1583-z

Sužiedelytė-Visockienė, J., Bagdžiūnaitė, R., Malys, N., & Maliene, V. (2015). Close-range photogrammetry enables documentation of environment-induced deformation of architectural heritage. Environmental Engineering and Management Journal, 14(6), 1371-1381. https://doi.org/10.30638/eemj.2015.149

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem