- -

IoT, Machine Learning and Photogrammetry in Small Hydropower Towards Energy and Digital Transition: Potential Energy and Viability Analyses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

IoT, Machine Learning and Photogrammetry in Small Hydropower Towards Energy and Digital Transition: Potential Energy and Viability Analyses

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ramos, Helena M. es_ES
dc.contributor.author Coronado-Hernández, Óscar E. es_ES
dc.coverage.spatial east=-17.0470138; north=32.8040637; name=RX33+J5 São Vicente, Portugal es_ES
dc.date.accessioned 2023-07-24T11:31:42Z
dc.date.available 2023-07-24T11:31:42Z
dc.date.issued 2023-05-31
dc.identifier.uri http://hdl.handle.net/10251/195372
dc.description.abstract [EN] This research aims to evaluate and put into practise the design of a small hydropower plant on a stream at São Vicente, in Madeira Island, supported by internet of things (IoT). The photogrammetry technique is also used with a comprehensive digital transformation, in which new concepts, methods and models, such as machine learning (ML), and big data analytics play an important role due to the huge availability time series that have to be exploited in hydropower design studies. Nowadays, digitalization and massive data availability are imposing new ways to address many of the current challenges associated with the energy and digital transition. This research is based on a simple small hydropower design, to present an integrated methodology using new methods assigned by an internet protocol system, which includes the development of different steps and components supported by GIS, photogrammetry and the use of advanced tools, with the support of a drone survey with internet communication (IoT) that allow the generation of experimentally-based estimates in situ characterization, the volumetric flow, the hydrological data treatment, the hydraulic calculations and economic estimations for a real hydro project. Therefore, hydrological variables, hydraulic analysis and topographical survey are carried out in the IoT application platform supported by new tools and methods to optimise the size of hydraulic structures, estimate the performance and potential of the hydropower plant towards the best solution for energy and digital transition. Firstly, the data-base for the all study and posterior sizing of the case study of hydropower plant are defined and then the corresponding analyses and results are presented. Then, the cost estimation for the construction, maintenance and operation of the selected elements that compose the hydropower topology are determined, as well as the respective economic balance, considering the annual energy production. In addition, both economic and environmental return on investment is discussed. Finally, an analysis to equate the cost estimates and the respective benefits of hydropower generation using this new approach applicability is stablished, taking into account some economic indicators to determine the profitability of the project. es_ES
dc.description.sponsorship The authors would like to thank to RAM in the data acquisition support and also to João Pedro Barreto in the survey, data achievement and analyses developed during his MSc thesis, under the supervision of Prof. Helena M. Ramos, which the study was the basis for the development of this research. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Journal of Applied Research in Technology & Engineering es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject IoT es_ES
dc.subject Smart tools es_ES
dc.subject Photogrammetry es_ES
dc.subject Machine learning es_ES
dc.subject Viability design es_ES
dc.subject Small hydropower es_ES
dc.subject Energy and digital transition es_ES
dc.subject Internet protocol es_ES
dc.title IoT, Machine Learning and Photogrammetry in Small Hydropower Towards Energy and Digital Transition: Potential Energy and Viability Analyses es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/jarte.2023.19510
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Ramos, HM.; Coronado-Hernández, ÓE. (2023). IoT, Machine Learning and Photogrammetry in Small Hydropower Towards Energy and Digital Transition: Potential Energy and Viability Analyses. Journal of Applied Research in Technology & Engineering. 4(2):69-86. https://doi.org/10.4995/jarte.2023.19510 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/jarte.2023.19510 es_ES
dc.description.upvformatpinicio 69 es_ES
dc.description.upvformatpfin 86 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2695-8821
dc.relation.pasarela OJS\19510 es_ES
dc.description.references Afzal, B., Umair, M., Asadullah, S.G., & Ahmed, E. (2019). Enabling IoT platforms for social IoT applications: Vision, feature mapping, and challenges. Future Generation Computer Systems, 92, 718-731. https://doi.org/10.1016/j.future.2017.12.002 es_ES
dc.description.references Barros, M.T.L., Tsai., F.T.C., Yang, S., Lopes, J.E.G., & Yeh, W.W.G. (2003). Optimization of large-scale hydropower system operations. J. Water Resour. Plan. Manag., 129(3), 178-188. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(178) es_ES
dc.description.references Bhatia, M., & Sood, S K. (2020). Quantum Computing-Inspired Network Optimization for IoT Applications. IEEE Internet of Things Journal, 7(6), 5590-5598. https://doi.org/10.1109/JIOT.2020.2979887 es_ES
dc.description.references Brown, E. (2016). 21 Open-Source Projects for IoT. Linux.com. Retrieved October 23, 2016. es_ES
dc.description.references Cheng, W.K., Ileladewa, A.A., & Tan, T.B. (2019). A Personalized Recommendation Framework for Social Internet of Things (SIoT). In 2019 International Conference on Green and Human Information Technology (ICGHIT), pp. 24-29. https://doi.org/10.1109/ICGHIT.2019.00013 es_ES
dc.description.references Chiara, B., Hans, I.S., Jiehong, K., & Zhirong, Y. (2020). Machine Learning for Hydropower Scheduling: State of the Art and Future Research Directions. Procedia Computer Science, 176, 1659-1668. https://doi.org/10.1016/j.procs.2020.09.190 es_ES
dc.description.references Ferreira, J.H.I., Camacho, J.R., Malagoli, J.A., & Júnior, S.C.G. (2016). Assessment of the potential of small hydropower development in Brazil. Renewable and Sustainable Energy Reviews, 56, 380-387. https://doi.org/10.1016/j.rser.2015.11.035 es_ES
dc.description.references Filho, G.L.T., dos Santos, I.F.S., & Barros, R.M. (2017). Cost estimate of small hydroelectric power plants based on the aspect factor. Renewable and Sustainable Energy Reviews, 77, 229-238. https://doi.org/10.1016/j.rser.2017.03.134 es_ES
dc.description.references Filo, G. (2023). Artificial Intelligence Methods in Hydraulic System Design. Energies, 16(8), 3320. https://doi.org/10.3390/en16083320 es_ES
dc.description.references Finardi, E.C., & da Silva, E.L. (2006). Solving the hydro unit commitment problem via dual decomposition and sequential quadratic programming. IEEE Transactions on Power Systems, 21(2), 835-844. https://doi.org/10.1109/TPWRS.2006.873121 es_ES
dc.description.references Gaspar, M.A., & Portela, M.M. (2002). Contribution for the characterization of water resources in Madeira Island. Model to evaluate the superficial flow. 6º Water Congress (in Portuguese), Porto. es_ES
dc.description.references Gielen, D., Boshell, F., Saygin, D., Bazilian, M.D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38-50. https://doi.org/10.1016/j.esr.2019.01.006 es_ES
dc.description.references Gillis, A. (2021). What is internet of things (IoT)? IOT Agenda. Retrieved August 17, 2021. es_ES
dc.description.references International Energy Agency (IEA), International Renewable Energy Agency (IRENA), United Nations Statistics Division (UNSD), World Bank Group (WB), & World Health Organization (WHO). (2019). Tracking SDG 7: The Energy Progress Report 2019. Washington, DC. Available online: https://www.irena.org/publications/2019/May/Tracking-SDG7-TheEnergy-Progress-Report-2019 (accessed on February 15, 2021). es_ES
dc.description.references International Energy Agency (IEA). (2020). Global Energy Review 2020. Available online: https://www.iea.org/reports/global-energy-review-2020 (accessed on February 15, 2021). https://doi.org/10.1787/a60abbf2-en es_ES
dc.description.references Kishore, T.S., Patro, E.R., Harish, V.S.K.V., & Haghighi, A.T. (2021). A Comprehensive Study on the Recent Progress and Trends in Development of Small Hydropower Projects. Energies, 14, 2882. https://doi.org/10.3390/en14102882 es_ES
dc.description.references Kishore, T.S., & Vidyabharati, I.L. (2020). Characterization of high head run-of-river small hydro power plants using life cycle costing methodology. Water Energy International, 63, 42-47. es_ES
dc.description.references Kumar, R., Singal, S.K., Dwivedi, G., & Shukla, A.K. (2020). Development of maintenance cost correlation for high head run of river small hydro power plant. International Journal of Ambient Energy, 43, 1-14. https://doi.org/10.1080/01430750.2020.1804447 es_ES
dc.description.references Lundstrom, T., Baqersad, J., & Niezrecki, C. (2013). Using High-Speed Stereophotogrammetry to Collect Operating Data on a Robinson R44 Helicopter. In Special Topics in Structural Dynamics, Volume 6, Conference Proceedings of the Society for Experimental Mechanics Series (pp. 401-410). Springer. https://doi.org/10.1007/978-1-4614-6546-1_44 es_ES
dc.description.references Mitchell, T.M. (2017). Key Ideas in Machine Learning. Machine Learning, 1-11. es_ES
dc.description.references Montazerolghaem, A. (2021). Software-defined Internet of Multimedia Things: Energy-efficient and Load-balanced Resource Management. IEEE Internet of Things Journal, 9(3), 2432-2442. https://doi.org/10.1109/JIOT.2021.3095237 es_ES
dc.description.references Muñoz, A. (2014). Machine Learning and Optimization. Courant Institute of Mathematical Sciences, 1-2. es_ES
dc.description.references Oliveira, R.P., Almeida, A.B., Sousa, J., Pereira, M.J., Portela, M.M., Coutinho, M.A., Ferreira, R., & Lopes, S. (2011). Evaluation of debris risk in Madeira Island: consequences of flood report (in Portuguese). es_ES
dc.description.references Prada, S., Perestrelo, A., Sequeira, M., Nunes, A., Figueira, C., & Cruz, J.V. (2005). Disponibilidades Hídricas na ilha da Madeira. Available online: http://www.researchgate.net/publication/258541061 es_ES
dc.description.references Quaranta, E., & Revelli, R. (2015). Output power and power losses estimation for an overshot water wheel. Renewable Energy, 83, 979-987. https://doi.org/10.1016/j.renene.2015.05.018 es_ES
dc.description.references Ramos, H. (Ed.) (2000). Guidelines for the design of small hydropower plants (pp. 190). CEHIDRO/WREAN/DED, ISBN 972 96346 4 5, North Ireland, UK. es_ES
dc.description.references Santolin, A., Cavazzini, G., Pavesi, G., Ardizzon, G., & Rossetti, A. (2011). Techno-economical method for the capacity sizing of a small hydropower plant. Energy Conversion and Management, 52, 2533-2541. https://doi.org/10.1016/j.enconman.2011.01.001 es_ES
dc.description.references Sechin, A. (2014). Digital Photogrammetric Systems: Trends and Developments. GeoInformatics, 4, 32-34. es_ES
dc.description.references Singh, V.K., & Singal, S.K. (2017). Operation of hydro power plants-a review. Renewable and Sustainable Energy Reviews, 69, 610-619. https://doi.org/10.1016/j.rser.2016.11.169 es_ES
dc.description.references Stojković, M., Kostić, S., Prohaska, S., Plavšić, J., & Tripković, V. (2017). A New Approach for Trend Assessment of Annual Streamflows: a Case Study of Hydropower Plants in Serbia. Water Resources Management, 31(4), 1089-1103. https://doi.org/10.1007/s11269-017-1583-z es_ES
dc.description.references Sužiedelytė-Visockienė, J., Bagdžiūnaitė, R., Malys, N., & Maliene, V. (2015). Close-range photogrammetry enables documentation of environment-induced deformation of architectural heritage. Environmental Engineering and Management Journal, 14(6), 1371-1381. https://doi.org/10.30638/eemj.2015.149 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem