- -

Dealing with weighting scheme in composite indicators: An unsupervised distance-machine learning proposal for quantitative data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dealing with weighting scheme in composite indicators: An unsupervised distance-machine learning proposal for quantitative data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jiménez-Fernández, Eduardo es_ES
dc.contributor.author Sánchez, Angeles es_ES
dc.contributor.author Ortega Pérez, Mario es_ES
dc.date.accessioned 2023-07-25T18:01:38Z
dc.date.available 2023-07-25T18:01:38Z
dc.date.issued 2022-10 es_ES
dc.identifier.issn 0038-0121 es_ES
dc.identifier.uri http://hdl.handle.net/10251/195458
dc.description.abstract [EN] There is increasing interest in the construction of composite indicators to benchmark units. However, the mathematical approach on which the most commonly used techniques are based does not allow benchmarking in a reliable way. Additionally, the determination of the weighting scheme in the composite indicators remains one of the most troubling issues. Using the vector space formed by all the observations, we propose a new method for building composite indicators: a distance or metric that considers the concept of proximity among units. This approach enables comparisons between the units being studied, which are always quantitative. To this end, we take the P2 Distance method of Pena Trapero as a starting point and improve its limitations. The proposed methodology eliminates the linear dependence on the model and seeks functional relationships that enable constructing the most efficient model. This approach reduces researcher subjectivity by assigning the weighting scheme with unsupervised machine learning techniques. Monte Carlo simulations confirm that the proposed methodology is robust. es_ES
dc.description.sponsorship European Commission, project 813234. ERDF-Universidad de Granada, project B-SEJ-242-UGR20. Ministerio de Ciencia e Innovacion (España) , project PID2019-105708RB. Funding for open access charge: Universidad de Granada/CBUA. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Socio-Economic Planning Sciences es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Composite indicator es_ES
dc.subject P2 distance es_ES
dc.subject Unsupervised machine learning es_ES
dc.subject Benchmarking es_ES
dc.subject Weighting scheme es_ES
dc.subject MARS es_ES
dc.subject PACS es_ES
dc.subject C02 es_ES
dc.subject C15 es_ES
dc.subject C44 es_ES
dc.subject C43 es_ES
dc.title Dealing with weighting scheme in composite indicators: An unsupervised distance-machine learning proposal for quantitative data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.seps.2022.101339 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105708RB-C21/ES/SP1: DATAUSE STABLE METHODOLOGIES TO EVALUATE AND MEASURE QUALITY, INTEROPERABILITY, BLOCKCHAIN AND REUSE OF OPEN DATA IN THE AGRICULTURAL FIELD/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UGR//B-SEJ-242-UGR20/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/813234/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Jiménez-Fernández, E.; Sánchez, A.; Ortega Pérez, M. (2022). Dealing with weighting scheme in composite indicators: An unsupervised distance-machine learning proposal for quantitative data. Socio-Economic Planning Sciences. 83:1-11. https://doi.org/10.1016/j.seps.2022.101339 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.seps.2022.101339 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 83 es_ES
dc.relation.pasarela S\468305 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Universidad de Granada es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem