- -

Dealing with weighting scheme in composite indicators: An unsupervised distance-machine learning proposal for quantitative data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dealing with weighting scheme in composite indicators: An unsupervised distance-machine learning proposal for quantitative data

Mostrar el registro completo del ítem

Jiménez-Fernández, E.; Sánchez, A.; Ortega Pérez, M. (2022). Dealing with weighting scheme in composite indicators: An unsupervised distance-machine learning proposal for quantitative data. Socio-Economic Planning Sciences. 83:1-11. https://doi.org/10.1016/j.seps.2022.101339

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/195458

Ficheros en el ítem

Metadatos del ítem

Título: Dealing with weighting scheme in composite indicators: An unsupervised distance-machine learning proposal for quantitative data
Autor: Jiménez-Fernández, Eduardo Sánchez, Angeles Ortega Pérez, Mario
Fecha difusión:
Resumen:
[EN] There is increasing interest in the construction of composite indicators to benchmark units. However, the mathematical approach on which the most commonly used techniques are based does not allow benchmarking in a ...[+]
Palabras clave: Composite indicator , P2 distance , Unsupervised machine learning , Benchmarking , Weighting scheme , MARS , PACS , C02 , C15 , C44 , C43
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Socio-Economic Planning Sciences. (issn: 0038-0121 )
DOI: 10.1016/j.seps.2022.101339
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.seps.2022.101339
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105708RB-C21/ES/SP1: DATAUSE STABLE METHODOLOGIES TO EVALUATE AND MEASURE QUALITY, INTEROPERABILITY, BLOCKCHAIN AND REUSE OF OPEN DATA IN THE AGRICULTURAL FIELD/
info:eu-repo/grantAgreement/UGR//B-SEJ-242-UGR20/
info:eu-repo/grantAgreement/EC/H2020/813234/EU
Agradecimientos:
European Commission, project 813234. ERDF-Universidad de Granada, project B-SEJ-242-UGR20. Ministerio de Ciencia e Innovacion (España) , project PID2019-105708RB. Funding for open access charge: Universidad de Granada/CBUA.[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem