- -

Contractions of Kannan-type and of Chatterjea-type on fuzzy quasi-metric spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Contractions of Kannan-type and of Chatterjea-type on fuzzy quasi-metric spaces

Mostrar el registro completo del ítem

Romaguera Bonilla, S. (2022). Contractions of Kannan-type and of Chatterjea-type on fuzzy quasi-metric spaces. Results in Nonlinear Analysis. 5:347-359. https://doi.org/10.53006/rna.1140743

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/195662

Ficheros en el ítem

Metadatos del ítem

Título: Contractions of Kannan-type and of Chatterjea-type on fuzzy quasi-metric spaces
Autor: Romaguera Bonilla, Salvador
Fecha difusión:
Resumen:
[EN] We characterize the completeness of fuzzy quasi-metric spaces by means of a fixed point theorem of Kannan-type. Thus, we extend the classical characterization of metric completeness due to Subrahmanyam as well as ...[+]
Palabras clave: Fuzzy quasi-metric space , Quasi-metric space , Complete , Fixed point , Kannan contraction , Chatterjea contraction
Derechos de uso: Reserva de todos los derechos
Fuente:
Results in Nonlinear Analysis. (eissn: 2636-7556 )
DOI: 10.53006/rna.1140743
Editorial:
Erdal Karap&#305
nar
Versión del editor: https://doi.org/10.53006/rna.1140743
Tipo: Artículo

References

[1] M. Abbas, B. Ali, S. Romaguera, Multivalued Caristi’s type mappings in fuzzy metric spaces and a characterization of fuzzy metric completeness, Filomat 29 (2015) 1217-1222.

[2] C. Alegre, H. D˘ ag, S. Romaguera, P. Tirado, Characterizations of quasi-metric completeness in terms of Kannan-type fixed point theo- rems, Hacettepe J. Math. Stat. 46 (2017) 67-76.

[3] F. Castro-Company, S. Romaguera, P. Tirado, The bicompletion of fuzzy quasi-metric spaces, Fuzzy Sets Syst. 166 (2011) 56-64. [+]
[1] M. Abbas, B. Ali, S. Romaguera, Multivalued Caristi’s type mappings in fuzzy metric spaces and a characterization of fuzzy metric completeness, Filomat 29 (2015) 1217-1222.

[2] C. Alegre, H. D˘ ag, S. Romaguera, P. Tirado, Characterizations of quasi-metric completeness in terms of Kannan-type fixed point theo- rems, Hacettepe J. Math. Stat. 46 (2017) 67-76.

[3] F. Castro-Company, S. Romaguera, P. Tirado, The bicompletion of fuzzy quasi-metric spaces, Fuzzy Sets Syst. 166 (2011) 56-64.

[4] S.K. Chatterjea, Fixed point theorems. C. R. Acad. Bulgare Sci. 25 (1972) 727-730.

[5] Y.J. Cho, M. Grabiec, V. Radu, On non Symmetric Topological and Probabilistic Structures, Nova Science Publisher, Inc. New York, 2006

[6] S. Cobza¸ s, Functional Analysis in Asymmetric Normed spaces, Frontiers in Mathematics, Birkha˘ user/Springer Basel AG, Basel, Switzer- land, 2013.

[7] P. Fletcher, W.F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York, 1982.

[8] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994) 395-399.

[9] A. George, P. Veeramani, On some results of analysis of fuzzy metric spaces, Fuzzy Sets Syst. 90 (1997) 365-368.

[10] V. Gregori, S. Romaguera, Fuzzy quasi-metric spaces, Appl. Gen. Topol. 5 (2004) 129-136.

[11] T.K. Hu, On a fixed point theorem for metric spaces, Amer. Math. Monthly 74 (1967) 436-437.

[12] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968) 71-76.

[13] A.W. Kirk, Caristi’s fixed point theorem and metric convexity, Colloq. Math. 36 (1976) 81-86.

[14] E. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Academic, Dordrecht, 2000.

[15] I. Kramosil, J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika 11 (1975) 326-334.

[16] R.P. Pant, A. Pant, R.M. Nikolic, S.N. Jesic, A characterization of completeness of Menger PM-spaces, J. Fixed Point Theory Appl. (2019) 21:90.

[17] V. Radu, Some suitable metrics on fuzzy metric spaces, Fixed Point Theory 5 (2004) 323-347.

[18] S. Romaguera, A fixed point theorem of Kannan type that characterizes fuzzy metric completeness, Filomat 34 (2020) 4811-4819.

[19] S. Romaguera, w-distances on fuzzy metic spaces and fixed points, Mathematics 2020, 8, 1909.

[20] S. Romaguera, P. Tirado, A characterization of quasi-metric completeness in terms of α − ψ-contractive mappings having fixed points, Mathematics 2020, 8, 16.

[21] S. Romaguera, P. Tirado, Characterizing complete fuzzy metric spaces via fixed point results, Mathematics 2020, 8, 273.

[22] S. Romaguera, P. Tirado, Contractive self maps of α − ψ-type on fuzzy metric spaces, Dyn. Syst. Appl. 30 (2021) 359-370.

[23] P.V. Subrahmanyam, Completeness and fixed-points, Mh. Math. 80 (1975) 325-330.

[24] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008) 1861- 1869.

[25] T. Suzuki, W. Takahashi, Fixed point theorems and characterizations of metric completeness, Top. Methods Nonlinear Anal. 8 (1996) 371-382.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem